AN ELLIPTIC EQUATION WITH NO MONOTONICITY CONDITION ON THE NONLINEARITY

GREGORY S. SPRADLIN

ABSTRACT. An elliptic PDE is studied which is a perturbation of an autonomous equation. The existence of a nontrivial solution is proven via variational methods. The domain of the equation is unbounded, which imposes a lack of compactness on the variational problem. In addition, a popular monotonicity condition on the nonlinearity is not assumed. In an earlier paper with this assumption, a solution was obtained using a simple application of topological (Brouwer) degree. Here, a more subtle degree theory argument must be used.

1. Introduction

In this paper we consider an elliptic equation of the form

$$-\Delta u + u = f(x, u), \qquad x \in \mathbb{R}^N, \tag{1.1}$$

where f is a "superlinear" function of u. For large |x|, the equation resembles an autonomous equation

$$-\Delta u + u = f_0(u), \qquad x \in \mathbb{R}^N$$
(1.2)

Under weak assumptions on f and f_0 , we prove the existence of a nontrivial solution u of (1.1) with $|u(x)| \to 0$ as $|x| \to \infty$.

Let $N \in \mathbb{N}^+$ and let f_0 satisfy

- (f_1^0) $f_0 \in C^2(\mathbb{R}, \mathbb{R})$
- (f_2^0) $f_0(0) = 0 = f_0'(0),$ (f_3^0) If N > 2, there exist $a_1, a_2 > 0$, $s \in (1, (N+2)/(N-2))$ with $|f_0'(q)| \le a_1 + a_2|q|^{s-1}$ for all $q \in \mathbb{R}$. If N = 2, there exist $a_1 > 0$ and a function $\varphi: \mathbb{R}^+ \to \mathbb{R}$ with $|f_0'(q)| \leq a_1 \exp(\varphi(|q|))$ for all $q \in \mathbb{R}$ and $\varphi(t)/t^2 \to 0$ as
- (f_4^0) There exists $\mu > 2$ such that

$$0 < \mu F_0(q) \equiv \mu \int_0^q f_0(s) \, ds \le f_0(q) q \tag{1.3}$$

for all $q \in \mathbb{R}$.

Let f satisfy

- (f_1) $f \in C^2(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$
- $f(x,0) = 0 = f_q(x,0)$ for all $x \in \mathbb{R}^N$, where $f \equiv f(x,q)$

²⁰⁰⁰ Mathematics Subject Classification. 35J20, 35J60.

Key words and phrases. Mountain Pass Theorem, variational methods, Nehari manifold, Brouwer degree, concentration-compactness.

- (f₃) If N > 2, there exist $a_1, a_2 > 0$, $s \in (1, (N+2)/(N-2))$ with $|f_q(x,q)| \le a_1 + a_2|q|^{s-1}$ for all $q \in \mathbb{R}$, $x \in \mathbb{R}^N$. If N = 2, there exist $a_1 > 0$ and a function $\varphi : \mathbb{R}^+ \to \mathbb{R}$ with $|f_q(x,q)| \le a_1 \exp(\varphi(|q|))$ for all $q \in \mathbb{R}$, $x \in \mathbb{R}^N$ and $\varphi(t)/t^2 \to 0$ as $t \to \infty$.
- (f_4) There exists $\mu > 2$ such that

$$0 < \mu F(x,q) \equiv \mu \int_0^q f(x,s) \, ds \le f(x,q)q \tag{1.4}$$

for all $q \in \mathbb{R}$, $x \in \mathbb{R}^N$.

$$(f_5)$$
 $(F(x,q)-F_0(q))/F_0(q)\to 0$ as $|x|\to\infty$, uniformly in $q\in\mathbb{R}^N\setminus\{0\}$.

In order to state the theorem, we need to outline the variational framework of the problem. Define functionals $I_0, I \in C^2(W^{1,2}(\mathbb{R}^N, \mathbb{R}), \mathbb{R})$ by

$$I_0(u) = \frac{1}{2} ||u||^2 - \int_{\mathbb{R}^N} F_0(u(x)) dx, \tag{1.5}$$

$$I(u) = \frac{1}{2} ||u||^2 - \int_{\mathbb{R}^N} F(x, u(x)) dx, \tag{1.6}$$

where ||u|| is the standard norm on $W^{1,2}(\mathbb{R}^N,\mathbb{R})$ given by

$$||u||^2 = \int_{\mathbb{R}^N} |\nabla u(x)|^2 + u(x)^2 dx. \tag{1.7}$$

Critical points of I_0 correspond exactly to solutions u of (1.2) with $u(x) \to 0$ as $|x| \to \infty$, and critical points of I correspond exactly to solutions u of (1.1) with $u(x) \to 0$ as $|x| \to \infty$.

By $(f_4^0)/(f_4)$, F_0 and F are "superquadratic" functions of q, with $F_0(q)/q^2 \to 0$ as $q \to 0q$ and $F_0(q)/q^2 \to \infty$ as $|q| \to \infty$ and $F(x,q)/q^2 \to 0$ as $q \to 0$ and $F(x,q)/q^2 \to \infty$ as $|q| \to \infty$ for all $x \in \mathbb{R}^N$, uniformly in x. Therefore $I(0) = I_0(0) = 0$, and there exists $r_0 > 0$ with $I(u) \geq ||u||^2/3$ and $I_0(u) \geq ||u||^2/3$ for all $u \in W^{1,2}(\mathbb{R}^N)$ with $||u|| \leq r_0$, and there also exist $u, u_0 \in W^{1,2}(\mathbb{R}^N, \mathbb{R})$ with $I_0(u_0) < 0$ and I(u) < 0. So the sets of "mountain pass curves" for I_0 and I,

$$\Gamma_0 = \{ \gamma \in C([0, 1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid \gamma(0) = 0, \ I_0(\gamma(1)) < 0 \},$$
(1.8)

$$\Gamma = \{ \gamma \in C([0,1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid \gamma(0) = 0, \ I(\gamma(1)) < 0 \}, \tag{1.9}$$

are nonempty, and the mountain-pass values

$$c_0 = \inf_{\gamma \in \Gamma_0} \max_{\theta \in [0,1]} I_0(\gamma(\theta))$$
(1.10)

$$c = \inf_{\gamma \in \Gamma} \max_{\theta \in [0,1]} I(\gamma(\theta)) \tag{1.11}$$

are positive.

We are now in a position to state the Theorem.

Theorem 1.1. If f_0 and f satisfy (f_1^0) - (f_4^0) and (f_1) - (f_5) , and if there exists $\alpha > 0$ such that

$$I_0$$
 has no critical values in the interval $(c_0, c_0 + \alpha)$ (1.12)

then there exists $\epsilon_0 = \epsilon_0(f_0) > 0$ with the following property: If f satisfies

$$|F(x,q) - F_0(q)| < \epsilon_0 F_0(q) \tag{1.13}$$

for all $x \in \mathbb{R}^N$, $q \in \mathbb{R}$, then (1.2) has a nontrivial solution $u \not\equiv 0$ with $u(x) \to 0$ as $|x| \to \infty$.

As shown in [9], (1.13) holds in a wide variety of situations.

The missing monotonicity assumption

One interesting aspect of Theorem 1.1 is a condition that is not assumed. We do not assume

For all $q \in \mathbb{R}$ and $x \in \mathbb{R}^N$, $F_0(q)/q^2$ is a nondecreasing function of q for q > 0, $F_0(q)/q^2$ is a nonincreasing function of q for q < 0, (1.14) $F(x,q)/q^2$ is a nondecreasing function of q for q > 0, or $F(x,q)/q^2$ is a nonincreasing function of q for q < 0.

This condition holds in the power case, $F_0(q) = |q|^{\alpha}/\alpha$, $\alpha > 2$. The condition is due to Nehari.

If (1.14) were case, then for any $u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \setminus \{0\}$, the mapping $s \mapsto I(su)$ would begin at 0 at s = 0, increase to a positive maximum, then decrease to $-\infty$ as $s \to \infty$. Defining

$$S = \{ u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \setminus \{0\} \mid I'(u)u = 0 \}, \tag{1.15}$$

 \mathcal{S} would be a codimension-one submanifold of E, homeomorphic to the unit sphere in $W^{1,2}(\mathbb{R}^N,\mathbb{R})$ via radial projection. Any ray of the form $\{su\mid s>0\}\ (u\neq 0)$ intersects \mathcal{S} exactly once. All nonzero critical points of I are on \mathcal{S} . Conversely, under suitable smoothness assumptions on F, any critical point of I constrained to \mathcal{S} would be a critical point of I (in the large) (see [16]). Therefore, one could work with \mathcal{S} instead of $W^{1,2}(\mathbb{R}^N,\mathbb{R})$, and look for, say, a local minimum of I constrained to \mathcal{S} (which may be easier than looking for a saddle point of I). There is another way to use (1.14): for any $u\in \mathcal{S}$, the ray from 0 passing through u can be used (after rescaling in θ) as a mountain-pass curve along which the maximum value of I is I(u). Conversely, any mountain-pass curve $\gamma\in\Gamma$ intersects \mathcal{S} at least once ([6]). Therefore, one may work with points on \mathcal{S} instead of paths in Γ .

In the paper [16], a result similar to Theorem 1.1 was proven for the N=1 (ODE) case. The proof of Theorem 1.1 is similar except that a simple connectivity argument must be replaced by a degree theory argument. [17] proves a version of Theorem 1.1 under the assumption (1.14). Without 1.14, the manifold \mathcal{S} must be replaced by a set with similar properties.

Define $B_1(0) = \{x \in \mathbb{R}^N \mid |x| < 1\}$, and $\overline{\Omega}$ and $\partial\Omega$ to be, respectively, the topological closure and topological boundary of Ω . It is a simple consequence of the Brouwer degree ([7]) that for any continuous function $h : \overline{B_1(0)} \to \mathbb{R}^N$ with h(x) = x for all $x \in \partial B_1(0)$, there exists $x \in B_1(0)$ with h(x) = 0. We will need the following generalization:

Lemma 1.2. Let $h \in C(\overline{B_1(0)} \times [0,1], \mathbb{R}^N)$ with, for all $x \in \overline{B_1(0)}$ and $t \in [0,1]$,

- (i) h(x,0) = x = h(x,1).
- (ii) $x \in \partial B_1(0) \Rightarrow h(x,t) = x$.

Then there exists a connected subset $C_0 \subset \overline{B_1(0)} \times [0,1]$ with $(0,0), (0,1) \in C_0$ and h(x,t) = 0 for all $(x,t) \in C_0$.

Using the Brouwer degree, it is clear that under the hypotheses of Lemma 1.2, for each "horizontal slice" $\overline{B_1(0)} \times \{t\}$ of the cylinder $\overline{B_1(0)} \times [0,1]$, there exists $x \in B_1(0)$ with h(x,t) = 0. The conclusion of Lemma 1.2 does not follow from this observation. It is likely that Lemma 1.2 is known; however, the author has been unable to find a proof so one is given here.

This paper is organized as follows: Section 2 contains the proof of Theorem 1.1. The proof of Lemma 1.2 is deferred until Section 3.

2. Proof of Theorem 1.1

It is fairly easy to show that

$$c \le c_0, \tag{2.1}$$

where c and c_0 are from (1.10)-(1.11): it is proven in [11] that there exists $\gamma_1 \in$ Γ_0 with $\min_{\theta \in [0,1]} I_0(\gamma_1(\theta)) = c_0$. Define the translation operator τ as follows: for a function u on \mathbb{R}^N and $a \in \mathbb{R}^N$, define let $\tau_a u$ be u shifted by a, that is, $(\tau_a u)(x) = u(x-a)$. Let $\epsilon > 0$. Let $\mathbf{e}_1 = \langle 1, 0, 0, \dots, 0 \rangle \in \mathbb{R}^N$ and define $\tau_{R\mathbf{e}_1} \gamma_1$ by $(\tau_{Re_1}\gamma_1)(\theta) = \tau_{Re_1}(\gamma_1(\theta))$. Then for large R > 0, by (f_5) , $\tau_{Re_1}\gamma_1 \in \Gamma$ and $\max_{\theta \in [0,1]} I((\tau_{Re_1} \gamma_1)(\theta)) < c_0 + \epsilon$. Since $\epsilon > 0$ was arbitrary, $c \le c_0$.

A Palais-Smale sequence for I is a sequence $(u_m) \subset W^{1,2}(\mathbb{R}^N,\mathbb{R})$ with $(I(u_m))$ convergent and $||I'(u_m)|| \to 0$ as $m \to \infty$. It is well-known that I fails the "Palais-Smale condition." That is, a Palais-Smale sequence need not converge. However, the following proposition states that a Palais-Smale sequence "splits" into the sum of a critical point of I and translates of critical points of I_0 :

Proposition 2.1. If $(u_m) \subset W^{1,2}(\mathbb{R}^N, \mathbb{R})$ with $I'(u_m) \to 0$ and $I(u_m) \to a > 0$, then there exist $k \geq 0$, $v_0, v_1, \ldots, v_k \in W^{1,2}(\mathbb{R}^N, \mathbb{R})$, and sequences $(x_m^i)_{m \geq 1}^{1 \leq i \leq k} \subset \mathbb{R}$ \mathbb{R}^N , such that

- (i) $I'(v_0) = 0$
- (ii) $I'_0(v_i) = 0$ for all i = 1, ..., k

and along a subsequence (also denoted (u_m))

- (iii) $||u_m (v_0 + \sum_{i=1}^k \tau_{x_m^i} v_i)|| \to 0 \text{ as } m \to \infty$ (iv) $|x_m^i| \to \infty \text{ } m \to \infty \text{ for } i = 1, \dots, k$ (v) $|x_m^i x_m^j| \to \infty \text{ as } m \to \infty \text{ for all } i \neq j$ (iii) $I(v_0) + \sum_{i=1}^k I_0(v_i) = a$

A proof for the case of x-periodic F is found in [6], and essentially the same proof works here. Similar propositions for nonperiodic coefficient functions, for both ODE and PDE, are found in [5], [1], and [18], for example. All are inspired by the "concentration-compactness" theorems of P.-L. Lions ([12]).

If $c < c_0$, then by standard deformation arguments ([15]), there exists a Palais-Smale sequence (u_m) with $I(u_m) \to c$. By [11], the smallest nonzero critical value of I_0 is c_0 . Applying Proposition 2.1, we obtain k=0, and (u_m) has a convergent subsequence, proving Theorem 1.1. So assume from now on that

$$c = c_0. (2.2)$$

For $u \in L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\}$ and $i \in \{1, ..., N\}$, define \mathcal{L}_i , the *i*th component of the "location" of u, by

$$\int_{\mathbb{R}^N} u^2 \tan^{-1}(x_i - \mathcal{L}_i(u)) \, dx = 0$$
 (2.3)

and the "location" of u by

$$\mathcal{L}(u) = (\mathcal{L}_1(u), \dots, \mathcal{L}_N(u)) \in \mathbb{R}^N.$$
(2.4)

We are ready to begin the minimax argument. First we construct a mountainpass curve γ_0 with some special properties:

Lemma 2.2. There exists $\gamma_0 \in \Gamma_0$ such that for all $\theta \in [0,1]$,

- (i) $I_0(\gamma_0(\theta)) \le c_0$.
- (ii) $\theta > 0 \Rightarrow \gamma_0(\theta) \neq 0$.
- (iii) $\theta \le 1/2 \Rightarrow I_0(\gamma(\theta)) \le c_0/2$.
- (iv) $\theta > 0 \Rightarrow \mathcal{L}(\gamma(\theta)) = 0$.

Proof: by [10], there exists $\gamma_1 \in \Gamma_0$ with $\max_{\theta \in [0,1]} I_0(\gamma_1(\theta)) = c_0$. Assume without loss of generality that $\gamma_1(\theta) \neq 0$ for $\theta > 0$. By rescaling in θ if necessary, assume that $I_0(\gamma_1(\theta)) \leq c_0/2$ for $\theta \leq 1/2$. Finally, define γ_0 by $\gamma_0(0) = 0$, $\gamma_0(\theta) = \tau_{-\mathcal{L}(\gamma_1(\theta))}\gamma_1(\theta)$ for $\theta > 0$.

Assume ϵ_0 in (1.13) is small enough so that for all $x \in \mathbb{R}^N$ and $\theta \in [0, 1]$,

$$I(\tau_x(\gamma_0(\theta)) < \min(2c_0, c_0 + \alpha) \text{ and } I(\tau_x(\gamma_0(1))) < 0,$$
 (2.5)

where α is from (1.12).

A substitute for S

Using the mountain-pass geometry of I and the fact that Palais-Smale sequences of I are bounded in norm ([6]), we construct a set which has similar properties to S, described in Section 1. Let ∇I denote the gradient of I, that is, $(\nabla I(u), w) = I'(u)w$ for all $u, w \in W^{1,2}(\mathbb{R}^N, \mathbb{R})$. Here, (\cdot, \cdot) is the usual inner product defined by $(u, w) = \int_{\mathbb{R}^N} \nabla u \cdot \nabla w + uw \, dx$. Let $\varphi : W^{1,2}(\mathbb{R}^N, \mathbb{R}) \to \mathbb{R}$ be locally Lipschitz, with $I(u) \geq -1 \Rightarrow \varphi(u) = 1$ and $I(u) \leq -2 \Rightarrow \varphi(u) = 0$. Let η be the solution of the initial value problem

$$\frac{d\eta}{ds} = -\varphi(\eta)\nabla I(u), \quad \eta(0, u) = u. \tag{2.6}$$

In [18] it is proven that η is well-defined on $\mathbb{R}^+ \times W^{1,2}(\mathbb{R}^N)$. Let \mathcal{B} be the basin of attraction of 0 under the flow η , that is,

$$\mathcal{B} = \{ u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \mid \eta(s, u) \to 0 \text{ as } s \to \infty \}$$
 (2.7)

 \mathcal{B} is an open neighborhood of 0 ([18]). Let $\partial \mathcal{B}$ be the topological boundary of \mathcal{B} in $W^{1,2}(\mathbb{R}^N,\mathbb{R})$. $\partial \mathcal{B}$ has some properties in common with \mathcal{S} . For example, for any $\gamma \in \Gamma$, $\gamma([0,1])$ intersects $\partial \mathcal{B}$ at least once.

A pseudo-gradient vector field for I' may be used in place of ∇I , in which case \mathcal{B} and $\partial \mathcal{B}$ would be different, but the ensuing arguments would be the same.

Let

$$c^{+} = \inf\{I(u) \mid u \in \partial \mathcal{B}, \ |\mathcal{L}(u)| \le 1\}.$$
(2.8)

The reason for the label " c^+ " will become apparent in a moment. From now on, let us assume

I has no critical values in
$$(0, c_0] = (0, c]$$
. (2.9)

This will lead to the conclusion that I has a critical value greater than c_0 . We claim that under assumptions (2.2) and (2.9),

$$c^+ > c_0. (2.10)$$

To prove the claim, suppose first that $c^+ < c_0$. Then there exists $u_0 \in \partial \mathcal{B}$ with $I(u_0) < c_0$. Define $u_n = \eta(n, u_0)$. By arguments of [18] and [5], $||I'(u_n)|| \to 0$ as $n \to \infty$ and there exists $b \in (0, c_0)$ with $I(u_n) \to b$. By [11], I_0 has no critical values between 0 and c_0 . Therefore, Proposition 2.1, with k = 0, implies that (u_n) converges along a subsequence to a critical point w of I with $0 < I(w) < c_0$. This contradicts assumption (2.9).

Next, suppose that $c^+ = c_0$. Then there exists a sequence $(u_n) \subset \partial \mathcal{B}$ with $I(u_n) \to c_0$ as $n \to \infty$. By the arguments of [18], $I'(u_n) \to 0$ as $n \to \infty$; to prove, suppose otherwise. Then there exists b > 0 and a subsequence of (u_n) (also called (u_n)) along which $||I'(u_n)|| > b$. Since $\partial \mathcal{B}$ is forward- η -invariant ([18]), $\eta(1, u_n) \in \partial \mathcal{B}$ for all n. Since $(\eta(1, u_n))_{n \ge 1}$ is bounded ([18]) and I' is Lipschitz on bounded subsets of $W^{1,2}(\mathbb{R}^N, \mathbb{R})$, for large n, $\eta(1, u_n) \in \partial \mathcal{B}$ with $I(\eta(1, u_n)) < c_0$. By the argument above, this implies that I has a critical value in $(0, c_0)$, contradicting assumption (2.2). Thus $I'(u_n) \to 0$ as $n \to \infty$. Applying Proposition 2.1 and using the fact that $|\mathcal{L}(u_n)| \le 1$ for all n, (u_n) converges along a subsequence to a critical point of I, contradicting assumption (2.9). (2.10) is proven.

Let R > 0 be big enough so that for all $x \in \partial B_R(0) \subset \mathbb{R}^N$ and $\theta \in [0, 1]$,

$$I(\tau_x \gamma_0(\theta)) < c^+. \tag{2.11}$$

This is possible by (1.13), (2.10), and Lemma 2.2(i). Define the minimax class

$$\mathcal{H} = \{ h \in C(\overline{B_R(0)} \times [0, 1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid$$
for all $x \in \overline{B_R(0)}$ and $t \in [0, 1]$,
$$t > 0 \Rightarrow h(x, t) \neq 0$$

$$0 \le t \le 1/2 \Rightarrow h(x, t) = \tau_x \gamma_0(t)$$

$$x \in \partial B_R(0) \Rightarrow h(x, t) = \tau_x \gamma_0(t)$$

$$h(x, 1) = \tau_x \gamma_0(1) \}$$

and the minimax value

$$h_0 = \inf_{h \in \mathcal{H}} \max_{(x,t) \in \overline{B_R(0)} \times [0,1]} I(h(x,t)). \tag{2.12}$$

We claim

$$c_0 < c^+ \le h_0 < \min(2c_0, c_0 + \alpha).$$
 (2.13)

Proof of Claim: define $\bar{h} \in \mathcal{H}$ by $\bar{h}(x,t) = \tau_x(\gamma_0(t))$. Then $\bar{h} \in \mathcal{H}$ and by (2.5), $\max_{(x,t)\in \overline{B_R(0)}\times[0,1]}\bar{h}(x,t) < \min(2c_0,c_0+\alpha)$. Therefore $h_0 < \min(2c_0,c_0+\alpha)$.

Next, let $h \in \mathcal{H}$. By Lemma 1.2, and a suitable rescaling of x and t, there exists a connected set $C_2 \subset B_R(0) \times [1/2, 1]$ with $(0, 1/2), (0, 1) \in C_2$ and along which for all $(x, t) \in C_2$,

$$\mathcal{L}(h(x,t)) = 0. \tag{2.14}$$

Joining C_2 with the segment $\{0\} \times [0, 1/2]$, we obtain a connected set $C_3 \subset B_R(0) \times [0, 1]$ such that $(0, 0), (0, 1) \in C_3$ and for all $(x, t) \in C_3$, $\mathcal{L}(h(x, t)) = 0$. C_3 is not

necessarily path-connected, so let r > 0 be small enough so that for all

$$(x,t) \in N_r(C_3) \equiv \{(y,s) \in B_R(0) \times [0,1] \mid \exists (x',t') \in B_R(0) \times [0,1] \text{ with } |y-x'|^2 + (s-t')^2 < r^2\},$$
 (2.15)
$$|\mathcal{L}(h(x,t))| < 1.$$

 $N_r(C_3)$ is path-connected ([20]), so there exists a path $g \in C([0,1], N_r(C_3))$ with g(0) = (0,0), g(1) = (0,1), and $g(\theta) \in N_r(C_3)$ for all $\theta \in [0,1]$. If we define $\tilde{\gamma} \in \Gamma$ by $\tilde{\gamma}(\theta) = h(g(\theta)),$ then $|\mathcal{L}(\tilde{\gamma}(\theta))| < 1$ for all $\theta \in [0,1]$. Since $\tilde{\gamma}(0) = 0$ and $I(\tilde{\gamma}(1)) < 0$, there exists $\theta^* \in [0,1]$ with $\tilde{\gamma}(\theta^*) \in \partial \mathcal{B}$. By the definition of c^+ (2.8), $I(\tilde{\gamma}(\theta^*)) \geq c^+$.

Since h was an arbitrary element of \mathcal{H} , $h_0 \geq c^+$.

By standard deformation arguments, such as described in [15], there exists a Palais-Smale sequence $(u_n) \subset W^{1,2}(\mathbb{R}^N,\mathbb{R})$ with $I'(u_n) \to 0$ and $I(u_n) \to h_0$ as $n \to \infty$. $c_0 < h_0 < \min(2c_0, c_0 + \alpha)$. Apply Proposition 2.1 to (u_n) . Since I_0 has no positive critical values smaller than c_0 ([11]), $k \le 1$. By (2.9), (u_n) converges along a subsequence to a critical point z of I, with $I(z) = h_0$. Theorem 1.1 is proven.

3. A Degree-Theoretic Lemma

Here, we prove Lemma 1.2. Let h be as in the hypotheses of the lemma. For l > 0, define $A_l \subset \overline{B_1(0)} \times [0,1]$ by

$$A_l = \{ (x, t) \in \overline{B_1(0)} \times [0, 1] \mid |f(x, t)| < l \}. \tag{3.1}$$

 A_l is an open neighborhood of (0,0). Let C_l be the component of A_l containing (0,0). We will prove the following claim:

For all
$$\epsilon > 0$$
, $(0,1) \in C_{\epsilon}$. (3.2)

Then we will use the C_{ϵ} 's to construct C_0 . For l > 0 and $t \in [0, 1]$, define

$$C_l^t = \{ x \in \overline{B_1(0)} \mid (x, t) \in C_l \}.$$
 (3.3)

Fix $\epsilon \in (0,1)$. Define $\phi : [0,1] \to \mathbb{Z}$ by

$$\phi(t) = d(h(\cdot, t), C_{\epsilon}^t, 0), \tag{3.4}$$

where d is the topological Brouwer degree ([7]). We will prove $\phi(t) = 1$ for all $t \in [0, 1]$, in particular $\phi(1) = 1$, so (3.2) is satisfied.

f is continuous on a compact domain, so f is uniformly continuous. Let $\rho > 0$ be small enough so that for all $x \in \overline{B_1(0)}$ and $t_1, t_2 \in [0, 1]$,

$$|t_1 - t_2| < \rho \Rightarrow |h(x, t_1) - h(x, t_2)| < \epsilon/4.$$
 (3.5)

Clearly

$$\phi(0) = d(id, B_{\epsilon}(0), 0) = 1. \tag{3.6}$$

Let $0 \le t_1 < t_2 \le 1$ with $t_2 - t_1 < \rho$. We will show $\phi(t_1) = \phi(t_2)$, proving that ϕ is constant, which by (3.6), implies (3.2).

 Ω is nonempty. For all $x \in \partial C^{t_1}_{\epsilon}$, $|h(x, t_1)| = \epsilon$, so by (3.5),

$$x \in \partial C_{\epsilon}^{t_1} \Rightarrow |h(x, t_1)| \ge \frac{3}{4}\epsilon.$$
 (3.7)

By the additivity property of d ([7]),

$$\phi(t_2) \equiv d(f(\cdot, t_2), C_{\epsilon}^{t_2}, 0) =$$

$$= d(f(\cdot, t_2), C_{\epsilon}^{t_2} \setminus \overline{C_{\epsilon}^{t_1}}, 0) + d(f(\cdot, t_2), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0).$$
(3.8)

We will show:

There does not exist
$$x \in C^{t_2}_{\epsilon} \setminus \overline{C^{t_1}_{\epsilon}}$$
 with $h(x, t_2) = 0$. (3.9)

Suppose such an x exists. Then by (3.5), $|h| < \epsilon/4$ on the segment $\{x\} \times [t_1, t_2]$. $x \in C_{\epsilon}^{t_2}$, so $(x, t_2) \in C_{\epsilon}$, and by the definition of C_{ϵ} , $(x, t_1) \in C_{\epsilon}$, and $x \in C_{\epsilon}^{t_1}$, contradicting $x \in C_{\epsilon}^{t_2} \setminus \overline{C_{\epsilon}^{t_1}}$. So (3.9) is true. Therefore by (3.8),

$$\phi(t_2) = d(f(\cdot, t_2), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0). \tag{3.10}$$

By the same argument, switching the roles of t_1 and t_2 ,

$$\phi(t_1) = d(f(\cdot, t_1), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0). \tag{3.11}$$

For all $t \in [t_1, t_2]$ and $x \in \partial C_{\epsilon}^{t_1} \cup \partial C_{\epsilon}^{t_2}$, (3.5) gives $|h(x, t_1)| > 3\epsilon/4$ and $|h(x, t) - h(x, t_1)| < \epsilon/4$. Therefore by the homotopy invariance property of the degree ([7]),

$$\phi(t_1) = d(f(\cdot, t_1), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0) =$$

$$= d(f(\cdot, t_2), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0) = \phi(t_2).$$
(3.12)

 $\phi(0) = 1$ and $\phi(t_1) = \phi(t_2)$ for any $t_1 < t_2$ with $t_1, t_2 \in [0, 1]$ and $t_2 - t_1 < \rho$. Therefore ϕ is constant, and $\phi(1) = 1$. Therefore $(0, 1) \in C_{\epsilon}$.

Now let

$$C_0 = \bigcap_{\epsilon > 0} C_{\epsilon}. \tag{3.13}$$

Each C_{ϵ} is a connected set containing (0,0) and (0,1), so it is easy to show that C_0 is a connected set containing (0,0) and (0,1), and clearly for all $(x,t) \in C_0$, h(x,t) = 0.

References

- [1] F. Alessio and P. Montecchiari, Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Annales de l'Institut Henri Poincaré, Vol. 16 (1999), No. 1, 107-135.
- [2] A. Bahri and Y.-Y. Li, On a Min-Max Procedure for the Existence of a Positive Solution for a Certain Scalar Field Equation in \mathbb{R}^N , Revista Iberoamericana, Vol. 6 (1990), 1-17.
- [3] P. Caldiroli, A New Proof of the Existence of Homoclinic Orbits for a Class of Autonomous Second Order Hamiltonian Systems in ℝ^N, Math. Nachr., Vol. 187 (1997), 19-27.
- [4] P. Caldiroli, P. Montecchiari, Homoclinic orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Anal., Vol. 1 (1994), No. 2, 97-129.
- [5] V. Coti Zelati, P. Montecchiari, and M. Nolasco, Multibump solutions for a class of second order, almost periodic Hamiltonian systems, Nonlinear Ordinary Differential Equations and Applications, Vol. 4 (1997), No. 1, 77-99.
- [6] V. Coti Zelati and P. Rabinowitz, Homoclinic Orbits for Second Order Hamiltonian Systems Possessing Superquadratic Potentials, Journal of the American Mathematical Society, Vol. 4 (1991), 693-627.
- [7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
- [8] M. Estaban and P.-L. Lions, Existence and non existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, Vol. 93 (1982), 1-14.
- [9] B. Franchi, E. Lanconelli, and J. Serrin, Existence and Uniqueness of Nonnegative Solutions of Quasilinear Equations in R^N, Advances in Mathematics, Vol. 118, (1996), 177-243.
- [10] L. Jeanjean, K. Tanaka, A Note on a Mountain Pass Characterization of Least Energy Solutions, Adv. Nonlinear Stud., Vol. 3, (2003), 445-455.

- [11] L. Jeanjean, K. Tanaka, A remark on least energy solutions in \mathbb{R}^N , Proc. AMer. Math. Soc., Vol. 131 (2003), 2399-2408.
- [12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case., Annales de l'Institut Henri Poincaré, Vol. 1 (1984), 102-145 and 223-283.
- [13] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989.
- [14] P. Rabinowitz, Homoclinic Orbits for a class of Hamiltonian Systems, Proc. Roy. Soc. Edinburgh, Sect. A, Vol. 114 (1990), 33-38.
- [15] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," C. B. M. S. Regional Conf. Series in Math., No. 65, Amer. Math. Soc., Providence, 1986.
- [16] G. Spradlin, Existence of Solutions to a Hamiltonian System without Convexity Condition on the Nonlinearity, Electronic Journal of Differential Equations, Vol. 2004 (2004), No. 21 1-13.
- [17] G. Spradlin, A Perturbation of a Periodic Hamiltonian System, Nonlinear Analysis, Theory, Methods, and Applications, Vol. 38, No. 8 (1999), 1003-1022.
- [18] G. Spradlin Interacting Near-Solutions of a Hamiltonian System, Calc. Var. PDE, Vol. 22 (2005), 447-464.
- [19] E. Serra, M. Tarallo, and S.Terracini, On the existence of homoclinic solutions to almost periodic second order systems, Annales de l'Institut Henri Poincaré, Vol. 13 (1996), 783-812.
- [20] G. Whyburn, Topological Analysis, Princeton University Press, 1964.

Gregory S. Spradlin

Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114-3900, USA

 $E ext{-}mail\ address: spradlig@erau.edu}$