
AN ELLIPTIC EQUATION WITH NO MONOTONICITY
CONDITION ON THE NONLINEARITY

GREGORY S. SPRADLIN

Abstract. An elliptic PDE is studied which is a perturbation of an au-

tonomous equation. The existence of a nontrivial solution is proven via vari-
ational methods. The domain of the equation is unbounded, which imposes a

lack of compactness on the variational problem. In addition, a popular mono-

tonicity condition on the nonlinearity is not assumed. In an earlier paper with
this assumption, a solution was obtained using a simple application of topo-

logical (Brouwer) degree. Here, a more subtle degree theory argument must

be used.

1. Introduction

In this paper we consider an elliptic equation of the form

−∆u + u = f(x, u), x ∈ RN , (1.1)

where f is a “superlinear” function of u. For large |x|, the equation resembles an
autonomous equation

−∆u + u = f0(u), x ∈ RN (1.2)

Under weak assumptions on f and f0, we prove the existence of a nontrivial solution
u of (1.1) with |u(x)| → 0 as |x| → ∞.

Let N ∈ N+ and let f0 satisfy
(f0

1 ) f0 ∈ C2(R, R)
(f0

2 ) f0(0) = 0 = f ′0(0),
(f0

3 ) If N > 2, there exist a1, a2 > 0, s ∈ (1, (N + 2)/(N − 2)) with |f ′0(q)| ≤
a1 + a2|q|s−1 for all q ∈ R. If N = 2, there exist a1 > 0 and a function
ϕ : R+ → R with |f ′0(q)| ≤ a1 exp(ϕ(|q|)) for all q ∈ R and ϕ(t)/t2 → 0 as
t →∞.

(f0
4 ) There exists µ > 2 such that

0 < µF0(q) ≡ µ

∫ q

0

f0(s) ds ≤ f0(q)q (1.3)

for all q ∈ R.

Let f satisfy
(f1) f ∈ C2(RN × R, R)
(f2) f(x, 0) = 0 = fq(x, 0) for all x ∈ RN , where f ≡ f(x, q)
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(f3) If N > 2, there exist a1, a2 > 0, s ∈ (1, (N + 2)/(N − 2)) with |fq(x, q)| ≤
a1 + a2|q|s−1 for all q ∈ R, x ∈ RN . If N = 2, there exist a1 > 0 and a
function ϕ : R+ → R with |fq(x, q)| ≤ a1 exp(ϕ(|q|)) for all q ∈ R, x ∈ RN

and ϕ(t)/t2 → 0 as t →∞.
(f4) There exists µ > 2 such that

0 < µF (x, q) ≡ µ

∫ q

0

f(x, s) ds ≤ f(x, q)q (1.4)

for all q ∈ R, x ∈ RN .
(f5) (F (x, q)− F0(q))/F0(q) → 0 as |x| → ∞, uniformly in q ∈ RN \ {0}.

In order to state the theorem, we need to outline the variational framework of
the problem. Define functionals I0, I ∈ C2(W 1,2(RN , R), R) by

I0(u) =
1
2
‖u‖2 −

∫
RN

F0(u(x)) dx, (1.5)

I(u) =
1
2
‖u‖2 −

∫
RN

F (x, u(x)) dx, (1.6)

where ‖u‖ is the standard norm on W 1,2(RN , R) given by

‖u‖2 =
∫

RN

|∇u(x)|2 + u(x)2 dx. (1.7)

Critical points of I0 correspond exactly to solutions u of (1.2) with u(x) → 0 as
|x| → ∞, and critical points of I correspond exactly to solutions u of (1.1) with
u(x) → 0 as |x| → ∞.

By (f0
4 )/(f4), F0 and F are “superquadratic” functions of q, with F0(q)/q2 → 0

as q → 0q and F0(q)/q2 → ∞ as |q| → ∞ and F (x, q)/q2 → 0 as q → 0 and
F (x, q)/q2 → ∞ as |q| → ∞ for all x ∈ RN , uniformly in x. Therefore I(0) =
I0(0) = 0, and there exists r0 > 0 with I(u) ≥ ‖u‖2/3 and I0(u) ≥ ‖u‖2/3 for
all u ∈ W 1,2(RN ) with ‖u‖ ≤ r0, and there also exist u, u0 ∈ W 1,2(RN , R) with
I0(u0) < 0 and I(u) < 0. So the sets of “mountain pass curves” for I0 and I,

Γ0 = {γ ∈ C([0, 1],W 1,2(RN , R)) | γ(0) = 0, I0(γ(1)) < 0}, (1.8)

Γ = {γ ∈ C([0, 1],W 1,2(RN , R)) | γ(0) = 0, I(γ(1)) < 0}, (1.9)
are nonempty, and the mountain-pass values

c0 = inf
γ∈Γ0

max
θ∈[0,1]

I0(γ(θ)) (1.10)

c = inf
γ∈Γ

max
θ∈[0,1]

I(γ(θ)) (1.11)

are positive.
We are now in a position to state the Theorem.

Theorem 1.1. If f0 and f satisfy (f0
1 )-(f0

4 ) and (f1)-(f5), and if there exists α > 0
such that

I0 has no critical values in the interval (c0, c0 + α) (1.12)
then there exists ε0 = ε0(f0) > 0 with the following property: If f satisfies

|F (x, q)− F0(q)| < ε0F0(q) (1.13)

for all x ∈ RN , q ∈ R, then (1.2) has a nontrivial solution u 6≡ 0 with u(x) → 0 as
|x| → ∞.
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As shown in [9], (1.13) holds in a wide variety of situations.

The missing monotonicity assumption

One interesting aspect of Theorem 1.1 is a condition that is not assumed. We
do not assume

For all q ∈ R and x ∈ RN , F0(q)/q2 is
a nondecreasing function of q for q > 0,

F0(q)/q2 is a nonincreasing function of q for q < 0,

F (x, q)/q2 is a nondecreasing function of q for q > 0, or

F (x, q)/q2 is a nonincreasing function of q for q < 0.

(1.14)

This condition holds in the power case, F0(q) = |q|α/α, α > 2. The condition is
due to Nehari.

If (1.14) were case, then for any u ∈ W 1,2(RN , R) \ {0}, the mapping s 7→ I(su)
would begin at 0 at s = 0, increase to a positive maximum, then decrease to −∞
as s →∞. Defining

S = {u ∈ W 1,2(RN , R) \ {0} | I ′(u)u = 0}, (1.15)

S would be a codimension-one submanifold of E, homeomorphic to the unit sphere
in W 1,2(RN , R) via radial projection. Any ray of the form {su | s > 0} (u 6= 0)
intersects S exactly once. All nonzero critical points of I are on S. Conversely,
under suitable smoothness assumptions on F , any critical point of I constrained to
S would be a critical point of I (in the large) (see [16]). Therefore, one could work
with S instead of W 1,2(RN , R), and look for, say, a local minimum of I constrained
to S (which may be easier than looking for a saddle point of I). There is another
way to use (1.14): for any u ∈ S, the ray from 0 passing through u can be used
(after rescaling in θ) as a mountain-pass curve along which the maximum value of
I is I(u). Conversely, any mountain-pass curve γ ∈ Γ intersects S at least once
([6]). Therefore, one may work with points on S instead of paths in Γ.

In the paper [16], a result similar to Theorem 1.1 was proven for the N = 1
(ODE) case. The proof of Theorem 1.1 is similar except that a simple connectivity
argument must be replaced by a degree theory argument. [17] proves a version of
Theorem 1.1 under the assumption (1.14). Without 1.14, the manifold S must be
replaced by a set with similar properties.

Define B1(0) = {x ∈ RN | |x| < 1}, and Ω and ∂Ω to be, respectively, the
topological closure and topological boundary of Ω. It is a simple consequence of
the Brouwer degree ([7]) that for any continuous function h : B1(0) → RN with
h(x) = x for all x ∈ ∂B1(0), there exists x ∈ B1(0) with h(x) = 0. We will need
the following generalization:

Lemma 1.2. Let h ∈ C(B1(0)× [0, 1], RN ) with, for all x ∈ B1(0) and t ∈ [0, 1],

(i) h(x, 0) = x = h(x, 1).
(ii) x ∈ ∂B1(0) ⇒ h(x, t) = x.

Then there exists a connected subset C0 ⊂ B1(0)× [0, 1] with (0, 0), (0, 1) ∈ C0 and
h(x, t) = 0 for all (x, t) ∈ C0.
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Using the Brouwer degree, it is clear that under the hypotheses of Lemma 1.2,
for each “horizontal slice” B1(0) × {t} of the cylinder B1(0) × [0, 1], there exists
x ∈ B1(0) with h(x, t) = 0. The conclusion of Lemma 1.2 does not follow from this
observation. It is likely that Lemma 1.2 is known; however, the author has been
unable to find a proof so one is given here.

This paper is organized as follows: Section 2 contains the proof of Theorem 1.1.
The proof of Lemma 1.2 is deferred until Section 3.

2. Proof of Theorem 1.1

It is fairly easy to show that

c ≤ c0, (2.1)

where c and c0 are from (1.10)-(1.11): it is proven in [11] that there exists γ1 ∈
Γ0 with minθ∈[0,1] I0(γ1(θ)) = c0. Define the translation operator τ as follows:
for a function u on RN and a ∈ RN , define let τau be u shifted by a, that is,
(τau)(x) = u(x− a). Let ε > 0. Let e1 =< 1, 0, 0, . . . , 0 >∈ RN and define τRe1γ1

by (τRe1γ1)(θ) = τRe1(γ1(θ)). Then for large R > 0, by (f5), τRe1γ1 ∈ Γ and
maxθ∈[0,1] I((τRe1γ1)(θ)) < c0 + ε. Since ε > 0 was arbitrary, c ≤ c0.

A Palais-Smale sequence for I is a sequence (um) ⊂ W 1,2(RN , R) with (I(um))
convergent and ‖I ′(um)‖ → 0 as m →∞. It is well-known that I fails the “Palais-
Smale condition.” That is, a Palais-Smale sequence need not converge. However,
the following proposition states that a Palais-Smale sequence “splits” into the sum
of a critical point of I and translates of critical points of I0:

Proposition 2.1. If (um) ⊂ W 1,2(RN , R) with I ′(um) → 0 and I(um) → a > 0,
then there exist k ≥ 0, v0, v1, . . . , vk ∈ W 1,2(RN , R), and sequences (xi

m)1≤i≤k
m≥1 ⊂

RN , such that

(i) I ′(v0) = 0
(ii) I ′0(vi) = 0 for all i = 1, . . . , k

and along a subsequence (also denoted (um))

(iii) ‖um − (v0 +
∑k

i=1 τxi
m

vi)‖ → 0 as m →∞
(iv) |xi

m| → ∞ m →∞ for i = 1, . . . , k
(v) |xi

m − xj
m| → ∞ as m →∞ for all i 6= j

(iii) I(v0) +
∑k

i=1 I0(vi) = a

A proof for the case of x-periodic F is found in [6], and essentially the same
proof works here. Similar propositions for nonperiodic coefficient functions, for
both ODE and PDE, are found in [5], [1], and [18], for example. All are inspired
by the “concentration-compactness” theorems of P. -L. Lions ([12]).

If c < c0, then by standard deformation arguments ([15]), there exists a Palais-
Smale sequence (um) with I(um) → c. By [11], the smallest nonzero critical value
of I0 is c0. Applying Proposition 2.1, we obtain k = 0, and (um) has a convergent
subsequence, proving Theorem 1.1. So assume from now on that

c = c0. (2.2)
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For u ∈ L2(RN , R) \ {0} and i ∈ {1, . . . , N}, define Li, the ith component of the
“location” of u, by ∫

RN

u2 tan−1(xi − Li(u)) dx = 0 (2.3)

and the “location” of u by

L(u) = (L1(u), . . . ,LN (u)) ∈ RN . (2.4)

We are ready to begin the minimax argument. First we construct a mountain-
pass curve γ0 with some special properties:

Lemma 2.2. There exists γ0 ∈ Γ0 such that for all θ ∈ [0, 1],
(i) I0(γ0(θ)) ≤ c0.
(ii) θ > 0 ⇒ γ0(θ) 6= 0.
(iii) θ ≤ 1/2 ⇒ I0(γ(θ)) ≤ c0/2.
(iv) θ > 0 ⇒ L(γ(θ)) = 0.

Proof: by [10], there exists γ1 ∈ Γ0 with maxθ∈[0,1] I0(γ1(θ)) = c0. Assume
without loss of generality that γ1(θ) 6= 0 for θ > 0. By rescaling in θ if necessary,
assume that I0(γ1(θ)) ≤ c0/2 for θ ≤ 1/2. Finally, define γ0 by γ0(0) = 0, γ0(θ) =
τ−L(γ1(θ))γ1(θ) for θ > 0.

Assume ε0 in (1.13) is small enough so that for all x ∈ RN and θ ∈ [0, 1],

I(τx(γ0(θ)) < min(2c0, c0 + α) and I(τx(γ0(1))) < 0, (2.5)

where α is from (1.12).

A substitute for S
Using the mountain-pass geometry of I and the fact that Palais-Smale sequences

of I are bounded in norm ([6]), we construct a set which has similar properties to
S, described in Section 1. Let ∇I denote the gradient of I, that is, (∇I(u), w) =
I ′(u)w for all u, w ∈ W 1,2(RN , R). Here, (·, ·) is the usual inner product defined
by (u, w) =

∫
RN ∇u · ∇w + uw dx. Let ϕ : W 1,2(RN , R) → R be locally Lipschitz,

with I(u) ≥ −1 ⇒ ϕ(u) = 1 and I(u) ≤ −2 ⇒ ϕ(u) = 0. Let η be the solution of
the initial value problem

dη

ds
= −ϕ(η)∇I(u), η(0, u) = u. (2.6)

In [18] it is proven that η is well-defined on R+ ×W 1,2(RN ). Let B be the basin of
attraction of 0 under the flow η, that is,

B = {u ∈ W 1,2(RN , R) | η(s, u) → 0 as s →∞} (2.7)

B is an open neighborhood of 0 ([18]). Let ∂B be the topological boundary of B
in W 1,2(RN , R). ∂B has some properties in common with S. For example, for any
γ ∈ Γ, γ([0, 1]) intersects ∂B at least once.

A pseudo-gradient vector field for I ′ may be used in place of ∇I, in which case
B and ∂B would be different, but the ensuing arguments would be the same.

Let
c+ = inf{I(u) | u ∈ ∂B, |L(u)| ≤ 1}. (2.8)

The reason for the label “c+” will become apparent in a moment. From now on,
let us assume

I has no critical values in (0, c0] = (0, c]. (2.9)
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This will lead to the conclusion that I has a critical value greater than c0.
We claim that under assumptions (2.2) and (2.9),

c+ > c0. (2.10)

To prove the claim, suppose first that c+ < c0. Then there exists u0 ∈ ∂B with
I(u0) < c0. Define un = η(n, u0). By arguments of [18] and [5], ‖I ′(un)‖ → 0 as
n → ∞ and there exists b ∈ (0, c0) with I(un) → b. By [11], I0 has no critical
values between 0 and c0. Therefore, Proposition 2.1, with k = 0, implies that (un)
converges along a subsequence to a critical point w of I with 0 < I(w) < c0. This
contradicts assumption (2.9).

Next, suppose that c+ = c0. Then there exists a sequence (un) ⊂ ∂B with
I(un) → c0 as n →∞. By the arguments of [18], I ′(un) → 0 as n →∞; to prove,
suppose otherwise. Then there exists b > 0 and a subsequence of (un) (also called
(un)) along which ‖I ′(un)‖ > b. Since ∂B is forward-η-invariant ([18]), η(1, un) ∈
∂B for all n. Since (η(1, un))n≥1 is bounded ([18]) and I ′ is Lipschitz on bounded
subsets of W 1,2(RN , R), for large n, η(1, un) ∈ ∂B with I(η(1, un)) < c0. By the
argument above, this implies that I has a critical value in (0, c0), contradicting
assumption (2.2). Thus I ′(un) → 0 as n →∞. Applying Proposition 2.1 and using
the fact that |L(un)| ≤ 1 for all n, (un) converges along a subsequence to a critical
point of I, contradicting assumption (2.9). (2.10) is proven.

Let R > 0 be big enough so that for all x ∈ ∂BR(0) ⊂ RN and θ ∈ [0, 1],

I(τxγ0(θ)) < c+. (2.11)

This is possible by (1.13), (2.10), and Lemma 2.2(i). Define the minimax class

H = {h ∈C(BR(0)× [0, 1],W 1,2(RN , R)) |

for all x ∈ BR(0) and t ∈ [0, 1],

t > 0 ⇒ h(x, t) 6= 0

0 ≤ t ≤ 1/2 ⇒ h(x, t) = τxγ0(t)

x ∈ ∂BR(0) ⇒ h(x, t) = τxγ0(t)

h(x, 1) = τxγ0(1)}

and the minimax value

h0 = inf
h∈H

max
(x,t)∈BR(0)×[0,1]

I(h(x, t)). (2.12)

We claim
c0 < c+ ≤ h0 < min(2c0, c0 + α). (2.13)

Proof of Claim: define h̄ ∈ H by h̄(x, t) = τx(γ0(t)). Then h̄ ∈ H and by (2.5),
max

(x,t)∈BR(0)×[0,1]
h̄(x, t) < min(2c0, c0 + α). Therefore h0 < min(2c0, c0 + α).

Next, let h ∈ H. By Lemma 1.2, and a suitable rescaling of x and t, there exists
a connected set C2 ⊂ BR(0)× [1/2, 1] with (0, 1/2), (0, 1) ∈ C2 and along which for
all (x, t) ∈ C2,

L(h(x, t)) = 0. (2.14)

Joining C2 with the segment {0}× [0, 1/2], we obtain a connected set C3 ⊂ BR(0)×
[0, 1] such that (0, 0), (0, 1) ∈ C3 and for all (x, t) ∈ C3, L(h(x, t)) = 0. C3 is not
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necessarily path-connected, so let r > 0 be small enough so that for all

(x, t) ∈Nr(C3) ≡ {(y, s) ∈ BR(0)× [0, 1] |
∃(x′, t′) ∈ BR(0)× [0, 1] with |y − x′|2 + (s− t′)2 < r2}, (2.15)

|L(h(x, t))| < 1.

Nr(C3) is path-connected ([20]), so there exists a path g ∈ C([0, 1], Nr(C3)) with
g(0) = (0, 0), g(1) = (0, 1), and g(θ) ∈ Nr(C3) for all θ ∈ [0, 1]. If we define
γ̃ ∈ Γ by γ̃(θ) = h(g(θ)), then |L(γ̃(θ))| < 1 for all θ ∈ [0, 1]. Since γ̃(0) = 0 and
I(γ̃(1)) < 0, there exists θ∗ ∈ [0, 1] with γ̃(θ∗) ∈ ∂B. By the definition of c+ (2.8),
I(γ̃(θ∗)) ≥ c+.

Since h was an arbitrary element of H, h0 ≥ c+.
By standard deformation arguments, such as described in [15], there exists a

Palais-Smale sequence (un) ⊂ W 1,2(RN , R) with I ′(un) → 0 and I(un) → h0 as
n →∞. c0 < h0 < min(2c0, c0 +α). Apply Proposition 2.1 to (un). Since I0 has no
positive critical values smaller than c0 ([11]), k ≤ 1. By (2.9), (un) converges along
a subsequence to a critical point z of I, with I(z) = h0. Theorem 1.1 is proven.

3. A Degree-Theoretic Lemma

Here, we prove Lemma 1.2. Let h be as in the hypotheses of the lemma. For
l > 0, define Al ⊂ B1(0)× [0, 1] by

Al = {(x, t) ∈ B1(0)× [0, 1] | |f(x, t)| < l}. (3.1)

Al is an open neighborhood of (0, 0). Let Cl be the component of Al containing
(0, 0). We will prove the following claim:

For all ε > 0, (0, 1) ∈ Cε. (3.2)

Then we will use the Cε’s to construct C0. For l > 0 and t ∈ [0, 1], define

Ct
l = {x ∈ B1(0) | (x, t) ∈ Cl}. (3.3)

Fix ε ∈ (0, 1). Define φ : [0, 1] → Z by

φ(t) = d(h(·, t), Ct
ε , 0), (3.4)

where d is the topological Brouwer degree ([7]). We will prove φ(t) = 1 for all
t ∈ [0, 1], in particular φ(1) = 1, so (3.2) is satisfied.

f is continuous on a compact domain, so f is uniformly continuous. Let ρ > 0
be small enough so that for all x ∈ B1(0) and t1, t2 ∈ [0, 1],

|t1 − t2| < ρ ⇒ |h(x, t1)− h(x, t2)| < ε/4. (3.5)

Clearly
φ(0) = d(id,Bε(0), 0) = 1. (3.6)

Let 0 ≤ t1 < t2 ≤ 1 with t2 − t1 < ρ. We will show φ(t1) = φ(t2), proving that φ is
constant, which by (3.6), implies (3.2).

Ω is nonempty. For all x ∈ ∂Ct1
ε , |h(x, t1)| = ε, so by (3.5),

x ∈ ∂Ct1
ε ⇒ |h(x, t1)| ≥

3
4
ε. (3.7)
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By the additivity property of d ([7]),

φ(t2) ≡ d(f(·, t2), Ct2
ε , 0) = (3.8)

= d(f(·, t2), Ct2
ε \ Ct1

ε , 0) + d(f(·, t2), Ct1
ε ∩ Ct2

ε , 0).

We will show:

There does not exist x ∈ Ct2
ε \ Ct1

ε with h(x, t2) = 0. (3.9)

Suppose such an x exists. Then by (3.5), |h| < ε/4 on the segment {x} × [t1, t2].
x ∈ Ct2

ε , so (x, t2) ∈ Cε, and by the definition of Cε, (x, t1) ∈ Cε, and x ∈ Ct1
ε ,

contradicting x ∈ Ct2
ε \ Ct1

ε . So (3.9) is true. Therefore by (3.8),

φ(t2) = d(f(·, t2), Ct1
ε ∩ Ct2

ε , 0). (3.10)

By the same argument, switching the roles of t1 and t2,

φ(t1) = d(f(·, t1), Ct1
ε ∩ Ct2

ε , 0). (3.11)

For all t ∈ [t1, t2] and x ∈ ∂Ct1
ε ∪ ∂Ct2

ε , (3.5) gives |h(x, t1)| > 3ε/4 and |h(x, t) −
h(x, t1)| < ε/4. Therefore by the homotopy invariance property of the degree ([7]),

φ(t1) = d(f(·, t1), Ct1
ε ∩ Ct2

ε , 0) = (3.12)

= d(f(·, t2), Ct1
ε ∩ Ct2

ε , 0) = φ(t2).

φ(0) = 1 and φ(t1) = φ(t2) for any t1 < t2 with t1, t2 ∈ [0, 1] and t2 − t1 < ρ.
Therefore φ is constant, and φ(1) = 1. Therefore (0, 1) ∈ Cε.

Now let
C0 =

⋂
ε>0

Cε. (3.13)

Each Cε is a connected set containing (0, 0) and (0, 1), so it is easy to show that
C0 is a connected set containing (0, 0) and (0, 1), and clearly for all (x, t) ∈ C0,
h(x, t) = 0.
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