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1. Introduction

In this paper we examine a Hamiltonian system with a “superquadratic” term, that is, of the form

−u′′+ u = f(t)V (u), where V (u) behaves like a power greater than 2 of u. We look for solutions homoclinic

to zero, or just “homoclinic,” that is, solutions u with |u′(t)| + |u(t)| → 0 as |t| → ∞. Such solutions can

be difficult to find, due to the lack of compactness of the domain and the subsequent failure of the Palais-

Smale condition in variational formulations of the problem (see [1] for an example of such a problem with

no homoclinic solutions). The existence of such solutions depends delicately on f and V . It is known that

they exist when f is periodic. We will examine a system in which f is a perturbation of a periodic function.

Assuming reasonably weak conditions on the periodic problem, we show that the perturbed problem has a

solution if the perturbation is small enough. The conditions required of the periodic problem can be verified

for some specific examples. We employ variational, mountain-pass techniques. The result almost extends to

an analogous elliptic partial differential equation, but subtle differences in the topology of R and Rn (n ≥ 2)

prevent a complete extension. Nevertheless, we find that for a large class of nearly-autonomous elliptic PDE,

there exists a nonzero solution decaying at infinity.

Consider the following system containing a periodic term:

−u′′ + u = h(t)V ′(u), (1.0)

where n ≥ 1 and V and h satisfy

(V1) V ∈ C2(Rn,R)

(V2) V (0) = 0, V ′(0) = 0, V ′′(0) = 0

(V3) there exists p > 1 such that V ′′(q)q · q ≥ pV ′(q) · q > 0 for all q ∈ Rn \ {0}
(V4) the mapping q 7→ V ′′(q)q is locally Lipschitz on Rn

(h1) h ∈ C1(R,R)

(h2) h(t) > 0 for all t ∈ R

(h3) h is periodic.

(V1) − (V3) imply that V ′(q) · q ≥ (p + 1)V (q) > 0 for q 6= 0. Therefore V (q)/|q|2 → 0 as |q| → 0, and

V (q)/|q|2 → ∞ as |q| → ∞. We know of no precedent for (V4), but (V4) does not seem overly restrictive,

since (V1)− (V4) are satisfied by the canonical example V (q) = |q|p+1 with p > 1.

In [2] it was proven, under slightly more general and weaker assumptions, that (1.0) must have homoclinic

solutions. In [3] it was proven that if the solutions of (1.0) obey a certain nondegeneracy condition, then
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(1.0) has infinitely many solutions that can be described as “multibumps,” that is, close to the sum of several

homoclinic solutions which are mainly supported on intervals which are far away from each other. In [4]

(again, using weaker and more general hypotheses) it is shown that if h is perturbed a little, then, if a similar

nondegeneracy condition on the homoclinic solutions of (1.0) is assumed, the system still has multibump

solutions.

The nondegeneracy conditions mentioned above are extremely difficult to verify. This raises an obvious

question. Can such conditions be omitted or weakened, or replaced with more easily verifiable conditions? In

this paper we achieve the latter for a certain class of Hamiltonian systems. Consider a Hamiltonian system

of the form

−u′′ + u = (h(t) + εg(t))V ′(u), (1.1)

where g satisfies

(g1) g ∈ C1(R,R),

(g2) supt∈R |g(t)| < ∞, and

(g3) g(t) → 0 as |t| → ∞.

We will show that, if we assume certain conditions on the homoclinic solutions of the unperturbed

problem (1.0), then for small enough |ε|, (1.1) has a nontrivial homoclinic solution. In order to state these

conditions, we need to examine the variational framework of the problem.

Variational Framework and Theorem Statement

Let E = W 1,2(R,Rn) along with the inner product

(u, w) =
∫

R

(

u′ · w′ + u · w
)

dt (1.2)

for u,w ∈ E and the associated norm ‖u‖ ≡ ‖u‖W 1,2(R). Then the functional I ∈ C2(E,R) corresponding

to (1.0) is

I(u) =
1
2
‖u‖2 −

∫

R
h(t)V (u) dt. (1.3)

The functional Iε ∈ C2(E,R) corresponding to (1.1) is

Iε(u) =
1
2
‖u‖2 −

∫

R
(h(t) + εg(t))V (u) dt. (1.4)

Any critical point v of I (resp. Iε) is a homoclinic solution of (1.0) (resp. (1.1)). We seek nonzero critical

points of Iε. Define the set

S = {u | I ′(u)u = 0, u 6= 0} (1.5)

and

c = inf
S

I. (1.6)

(Note: it is easy to verify that c is the “mountain-pass” value associated with I). In Section 2 we will see

that c must be a critical value of I. The nondegeneracy assumption of [4] (also in [5]) is the following: there

exists α > 0 such that the set of critical points

{v | I ′(v) = 0, I(v) < c + α} is countable. (1.7)

This is a variational analogue of the classical transversality condition, and either one is very difficult to verify

or contradict in general. (1.7) fails, for example, if h is a constant, for then (1.0) has uncountable continua

of solutions. The only example we know of in which this kind of condition has been verified is in the new

paper [6].

Define K = {v ∈ E | I ′(v) = 0} and K(c) = {v ∈ K | I(v) = c}. We can now state the theorem:
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Theorem 1.8 If V and h satisfy (V1) − (V3) and (h1) − (h3), and g satisfies (g1) − (g3), and one of the

following cases holds:

Case I: K(c) has a connected component that is compact

Case II: c is an isolated critical value of I,

then there exists ε0 > 0 with the property that if |ε| ≤ ε0, then (1.1) has a nontrivial homoclinic solution.

Case I is very similar to a condition found in [7]. Recent work by Alessio and Montecchiari ([8]) suggests

that Case I can be verified if h “oscillates slowly,” that is, if h̃ is periodic and non-constant, then for small

enough ε′ > 0, setting h(t) = h̃(ε′t) should result in Case I. Case I allows K(c) to be “more degenerate”

than does (1.7): (1.7) does not imply critical points are isolated, but it implies that any point in K(c) is

surrounded by arbitrarily small “annuli” which are disjoint with K (see [9]).

Case II holds, for example, if h is a constant and n = 1. An analogue of Case II also holds for a large

class of examples for the PDE version of Theorem 1.8 (see Section 5).

Organization of Paper

The paper is organized as follows: in Section 2 are some preliminaries and technical lemmas. Section 3

contains the proof for Case I above. Section 4 contains the proof for (Case II and NOT Case I). In Section 5

we almost extend Theorem 1.8 to a PDE setting, and we verify its conclusion for a large class of examples.

2. Preliminaries

Here we give technical lemmas about the functionals I and Iε, the manifold S, and the analogous

manifold Sε, to be defined in a moment. Throughout the paper we assume

|ε| < ε̃ ≡ min
R

h/ sup
R
|g|. (2.0)

Then infR(h + εg) > 0, so we may apply results from earlier works such as [3] and [10] (for an example of a

Hamiltonian system with potential changing sign, see [11]). We assume (V1)−(V3), (h1)−(h3), and (g1)−(g2)

throughout. The only results in this section that require (g3) are Proposition 2.4 and its Corollary 2.6. (V4)

is required only for Proposition 2.31.

Lemma 2.1 Let A > 0 and suppose |ε| ≤ A. Then Iε, I ′ε, and I ′′ε are bounded on bounded subsets of E,

independently of ε.

Proof: this is proven in [12] for ε = 0 and is trivial to modify.

Closely related to Lemma 2.1 is the following:

Lemma 2.2 Iε → I and I ′ε → I ′ as ε → 0 uniformly on bounded subsets of E.

Proof for I ′ε → I ′: Let B > 0. By (V1)− (V2), there exists B2 > 0 such that |V ′(q)| ≤ B2|q| if |q| ≤ B.

If ‖u‖ ≤ B, then ‖u‖L∞(R) ≤ B ([12]) and

‖I ′ε(u)− I ′(u)‖ = sup
‖w‖=1

(I ′ε(u)− I ′(u))w = |ε| sup
‖w‖=1

∫

gV ′(u) · w ≤ (2.3)

≤ |ε|(max |g|)B2 sup
‖w‖=1

∫

|u||w| ≤ |ε|(max |g|)B2‖u‖‖w‖ ≤ |ε|(max |g|)B2B.
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A Palais-Smale sequence of I is a sequence (um) ⊂ E with I ′(um) → 0 and I(um) convergent as m →∞.

A functional I satisfies the Palais-Smale condition if any Palais-Smale sequence is precompact. Here, I does

not satisfy the Palais-Smale condition, even when the Z-symmetry of I is taken into account (see [3]). It is

possible, however, to describe Palais-Smale sequences of Iε (and I) via the following proposition. Assume

from now on for simplicity that h is 1-periodic. For p ∈ Z, define the translation operator τp : E → E by

τpu(t) = u(t− p), so τpu is u shifted p units to the right. Then, defining Kε = {u ∈ E | I ′ε(u) = 0},

Proposition 2.4 Suppose g satisfies (g3). Let (um) ⊂ E be such that Iε(um) → b > 0 and I ′(um) → 0.

Then there exists w0 ∈ Kε (possibly equal to 0), l ∈ N∪ {0}, v1, . . . , vl ∈ K \ {0}, a subsequence of (um) and

corresponding sequences (ki
m) ⊂ Zn for 1 ≤ i ≤ l, such that

‖um − (w0 +
l

∑

i=1

τki
m

vi)‖ → 0 (i)

and

|ki
m| → ∞ and |ki

m − kj
m| → ∞ (ii)

as m →∞ for all i and all i 6= j, and

Iε(w0) +
l

∑

i=1

I(vi) = b (iii)

If l = 0 above then the summations are taken to be empty. The ε = 0, periodic version of Proposition 2.4

is taken from [3], and essentially the same proof gives the above. See [13] and [14] (Proposition 4.35) for

similar results.

It is well known that (V1)− (V3) (or weaker growth conditions found in [10] or [15]) imply that for any

u ∈ E \{0}, the function s 7→ I(su) is increasing for small positive s, achieves a maximum over {s > 0}, then

decreases to −∞ as s →∞. Since d
dsI(su) = I ′(su)u, this implies that S as defined in (1.4) is a manifold of

codimension one, and any ray of the form {su | s > 0} for u 6= 0 intersects S exactly once. Therefore, c is a

lower bound on the critical values of I. Arguments from, for example, [10] imply that c > 0. Therefore we

have the following two strong corollaries for Palais-Smale sequences of I and Iε near level c:

Corollary 2.5 Suppose g satisfies (g3). Let (um) ⊂ E be such that 0 < lim inf I(um) ≤ lim sup I(um) < 2c

and I ′(um) → 0. Then either

(um) is precompact, (i)

or there exists a subsequence of (um) (also denoted (um)), a sequence (pm) ⊂ Z with |pm| → ∞, and

v̄ ∈ K \ {0} with

‖um − τpm v̄‖ (ii)

as m →∞.

Proof: Apply Proposition 2.4 with ε = 0. By Proposition 2.4(iii), either w0 6= 0 and l = 0, or w0 = 0

and l = 1. The first case gives Corollary 2.5(i), and the second case gives Corollary 2.5(ii).

Corollary 2.6 Suppose g satisfies (g3). Let (um) ⊂ E be such that 0 < lim inf Iε(um) ≤ lim sup Iε(um) < 2c

and I ′ε(um) → 0. Then Iε has a nonzero critical point or Corollary 2.5 case (ii) holds.
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Proof: if Iε has no nonzero critical point, then Proposition 2.4 holds with w0 = 0. By Proposition 2.4(iii),

l = 1.

Define the manifold Sε, similar to S, by

Sε = {u | I ′ε(u)u = 0, u 6= 0}. (2.7)

(2.0) implies that Sε has a similar manifold structure to S. We will frequently use the following fact:

Lemma 2.8 Let B > 0. Then the set Sε∩{u | Iε(u) ≤ B} is a bounded subset of E, with bounds independent

of ε.

The proof is contained in the proof that Palais-Smale sequences of Iε are bounded, as found in, for

example, [4].

Let ε̃ be as in (2.0) and let |ε′| < ε̃. We claim there exists r0 = r0(ε′) > 0 with the property that that if

|ε| ≤ ε′, then

‖u‖ > r0 (2.9)

for all u ∈ Sε. Proof: let |ε′| < ε̃ and A = minR h− ε′maxR |g| > 0. By (V1)− (V2), there exists r0 > 0 such

that if |q| ≤ r0, then V ′(q)q < |q|2/(2A(p + 1)). Let |ε| ≤ ε′. Suppose u ∈ Sε and ‖u‖L∞(R) ≤ r0. Then

0 = I ′ε(u)u = ‖u‖2 −
∫

R
(h + εg)V ′(u)u dt ≥ ‖u‖2 − (min

R
h− ε′max

R
|g|)

∫

R
V ′(u)u ≥ (2.10)

≥ ‖u‖2 −A(p + 1)
∫

R
|q|2/(2A(p + 1)) ≥ ‖u‖2 − 1

2
‖u‖2 > 0.

This is impossible. Thus if u ∈ Sε, then ‖u‖ ≥ ‖u‖L∞(R) ≥ r0 (see [12]).

Recall that for u 6= 0, the function g(s) = I(su) is increasing for small s > 0, attains a maximum, then

decreases to infinity. The following lemma, from [12], estimates the change in slope of g near its maximum,

which occurs at s = 1 if u ∈ S. The strong growth condition (V3), as opposed to weaker versions found in

[15] or [3], is required for the proof.

Lemma 2.11 Let u ∈ S and define g(s) = I(su) for s ≥ 0. Let p be as in (V3), and assume without loss of

generality that p ≤ 2. Then

s ≥ 1 ⇒ g′(s) ≤ −1
4
(p− 1)(s− 1)‖u‖2 (i)

and
1
2
≤ s ≤ 1 ⇒ g′(s) ≥ 1

4
(p− 1)(1− s)‖u‖2. (ii)

We will need to “normalize” functions in E \{0} to obtain functions in Sε, that is, project functions onto

the manifold Sε. Since Sε is not a sphere in W 1,2(R), this requires some estimates. Define λε : E \{0} → R+

by

λε(u) = s : s > 0, su ∈ Sε. (2.12)
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As in [10], in an almost identical setting, λε is a continuous function. Define Nε : E \ {0} → Sε by

Nε(u) = λεu. (2.13)

Nε “normalizes” functions so that they are in Sε. The following lemma states that if ε is small, and

u ∈ S ∩ {I = c}, then u must be close to Nε(u):

Lemma 2.14 Let δ > 0. There exists ε̄ > 0 such that if |ε| ≤ ε̄, then

‖u−Nε(u)‖ < δ (2.15)

for all u ∈ S ∩ {I = c}.
Proof: By Lemma 2.8, there exists B > 0 such that ‖u‖ ≤ B for all u ∈ S ∩ {I = c}. Assume that

B > 2δ. Let ε̃ > 0 be from (2.0), and let r0 = r0(ε̃/2) be as in (2.9). By Lemma 2.2, there exists ε̄ ∈ (0, ε̃/2)

such that if |ε| ≤ ε̄, then

|I ′(su)u− I ′ε(su)u| < 1
8
(p− 1)

δ
B

r2
0 (2.16)

for all u with ‖u‖ ≤ 2B and |s| ≤ 2. Let u ∈ S with I(u) = c. Then ‖u‖ ≤ B. Define g(s) = I(su). By

Lemma 2.11(i) and (2.9),

g′(1 + δ/B) ≤ −1
4
(p− 1)

δ
B
‖u‖2 ≤ −1

4
(p− 1)

δ
B

r2
0. (2.17)(i)

Likewise, by Lemma 2.11(ii) and (2.9), since δ < B/2,

g′(1− δ/B) ≥ 1
4
(p− 1)

δ
B
‖u‖2 ≤ −1

4
(p− 1)

δ
B

r2
0. (2.17)(ii)

Define gε(s) = Iε(su). Since g′(s) = I ′(su)u and g′ε(s) = I ′ε(su)u, (2.16) implies

g′ε(1 + δ/B) ≤ g′(1 + δ/B) + |g′ε(1 + δ/B)− g′(1 + δ/B)| ≤ (2.18)(i)

≤ −1
4
(p− 1)

δ
B

r2
0 +

1
8
(p− 1)

δ
B

r2
0 < 0.

Likewise,

g′ε(1− δ/B) ≥ g′(1− δ/B)− |g′ε(1 + δ/B)− g′(1 + δ/B)| ≥ (2.18)(ii)

≥ 1
4
(p− 1)

δ
B

r2
0 −

1
8
(p− 1)

δ
B

r2
0 > 0.

Therefore there exists a unique s̄ ∈ (1− δ/B, 1 + δ/B) with g′ε(s̄) = I ′ε(s̄u)u = 0, and s̄u = Nε(u) ∈ Sε. So

‖u−Nε(u)‖ = ‖u− s̄u‖ = |1− s̄|‖u‖ < (δ/B)B = δ. (2.19)

The following proposition implies that a critical point of Iε|Sε is actually a critical point of Iε. Even

more strongly, it proves that Palais-Smale sequences of Iε|Sε are Palais-Smale sequences of Iε:

Proposition 2.20 Let C > 0 and |ε0| < ε̃ from (2.0). Then there exists σ > 0 such that if |ε| ≤ ε0, then

‖I ′ε|Sε(u)‖ ≥ σ‖I ′ε(u)‖ (2.21)
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for all u ∈ Sε with ‖u‖ ≤ C.

Proof: for clarity, we prove the result first for ε = 0, then extend it. ‖I ′|S(u)‖ can be defined as

‖I ′|S(u)‖ = sup{I ′(u)w/‖w‖ | w is tangent to S at u}. (2.22)

Define J(u) = I ′(u)u = ‖u‖2 −
∫

RhV ′(u) · u. Then S is the level set {J = 0} \ {0}. Let ∇I and ∇J denote

the gradients of I and J respectively, that is, (∇I(u), w) = I ′(u)w and (∇J(u), w) = J ′(u)w for all u,w ∈ E.

For vectors ~a and ~b 6= 0 in a Hilbert space, define Proj~b~a, the projection of ~a onto ~b, by Proj~b~a = ~a·~b
‖~b‖2

~b,

and Perp~b~a, the projection of ~a onto the orthogonal complement of ~b, by Perp~b~a = ~a − Proj~b~a. Then

Perp∇J(u)∇I(u) is tangent to S at u. Therefore, for any u ∈ S,

‖I ′|S(u)‖ ≥ (I ′(u)Perp∇J(u)∇I(u))/‖Perp∇J(u)∇I(u)‖ ≥ (2.23)

≥ (∇I(u), P erp∇J(u)∇I(u))/‖∇I(u)‖,

‖I ′|S(u)‖/‖I ′(u)‖ ≥ (∇I(u), P erp∇J(u)∇I(u))/‖∇I(u)‖2.

We will estimate the last quantity and find a positive lower bound for it.

(∇I(u), P erp∇J(u)∇I(u))/‖I ′(u)‖2 =
(

(∇I(u),∇I(u))− (∇I(u),∇J(u))2

‖∇J(u)‖2

)

/‖I ′(u)‖2 = (2.24)

=
1

‖∇J(u)‖2

(

‖∇J(u)‖2 − (∇I(u),∇J(u))2

‖∇I(u)‖2

)

.

∇I(u) and u are orthogonal, since (∇I(u), u) = I ′(u)u = 0. Therefore

‖∇J(u)‖2 ≥ ‖Proju∇J(u)‖2 + ‖Proj∇I(u)∇J(u)‖2 =
(∇J(u), u)2

‖u‖2
+

(∇J(u),∇I(u))2

‖∇I(u)‖2
. (2.25)

Applying (2.25) to (2.24),

(∇I(u), P erp∇J(u)∇I(u))/‖I ′(u)‖2 ≥ 1
‖∇J(u)‖2

(∇J(u), u)2

‖u‖2
=

(J ′(u)u)2

‖J ′(u)‖2‖u‖2
. (2.26)

(V3) and the fact that u ∈ S give

J ′(u)u = 2‖u‖2 −
∫

hV ′′(u)u · u−
∫

hV ′(u) · u = ‖u‖2 −
∫

hV ′′(u)u · u ≤ (2.27)

≤ ‖u‖2 − p
∫

hV ′(u) · u = −(p− 1)‖u‖2.

Now (2.23)-(2.27) yield

‖I ′|S(u)‖ ≥ −(p− 1)/‖J ′(u)‖2. (2.28)

By Lemma 2.1, ‖J ′‖ is bounded on bounded subsets of E. Let C2 > 0 be large enough so that ‖J ′(u)‖ < C2

if ‖u‖ ≤ C. Let r0 = r0(0) > 0 be as in (2.9). Then by (2.28),

‖I ′|S(u)‖/‖I ′(u)‖ ≥ (p− 1)2r2
0

C2
2

. (2.29)
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To extend this result to ε 6= 0, note that by (2.9), since |ε| ≤ ε0 < ε̃, there exists a positive lower bound rε0
0

for {‖w‖ | w ∈ Sε}. Also by Lemma 2.1, C2 can be chosen so that ‖J ′ε(u)‖ < C2 whenever ‖u‖ ≤ C.

Finally, one last result: any minimizing sequence of Iε|Sε is a Palais-Smale sequence of Iε. That is,

define cε, similar to c, by

cε = inf
Sε

Iε. (2.30)

Then

Proposition 2.31 Assume (V4). Then if (um) ⊂ Sε with Iε(um) → cε, then

I ′ε(um) → 0. (2.32)

Proof: for clarity we do the proof for ε = 0; the ε 6= 0 case works the same. The proof is indirect.

Suppose there exists δ > 0 and subsequence of (um), also denoted (um), with Iε(um) → cε and ‖I ′(um)‖ > δ

for all m ≥ 1. By Lemma 2.8, (um) is a bounded sequence, so by Lemma 2.1, there exists r > 0 with

‖I ′(w)‖ > δ/2 for all w ∈ Br(um) for any m. Let V : S → E be a locally Lipschitz vector field tangent to S
and satisfying

I ′(u)V (u) ≥ ‖I ′|S(u)‖2, (2.33)(i)

‖V (u)‖ ≤ 2‖I ′|S(u)‖ (2.33)(ii)

for all u ∈ S. Recall that S is the level set {J = 0}\{0}. Since J is not necessarily C2, the existence of V may

not be given by established theory of Hilbert manifolds (for example [16]). However, V (u) = Perp∇J(u)∇I(u)

as in Proposition 2.20 satisfies (2.33)(i)-(ii) optimally (without the “2” in (2.33)(ii)). Also, this V is locally

Lipschitz on E \ {0}, since ∇I and ∇J are locally Lipschitz on E and ‖∇J‖ is nonzero except at 0 (see

(2.27)). To that ∇J is locally Lipschitz, let A > 0 and u ∈ E \ {0} with ‖u‖ ≤ A. Let w ∈ E with

‖u − w‖ < δ < 1. By (V1) and (V4), there exists C > 0 with |V ′′(q1)q1 − V ′′(q2)q2| ≤ C|q1 − q2| and

|V ′(q1)− V ′(q2)| ≤ C|q1 − q2| whenever |q1|+ |q2| ≤ 2A + 2. Then,

‖J ′(u)− J ′(w)‖ = sup
z∈E, ‖z‖=1

|J ′(u)z − J ′(w)z| = (2.34)

= sup
z∈E, ‖z‖=1

[|2(u− w, z)−
∫

R
h(V ′′(u)u− V ′′(w)w) · z −

∫

R
h(V ′(u)− V ′(w)) · z|] ≤

≤ 2‖u− w‖+ (max
R

|h|) sup
z∈E, ‖z‖=1

(
∫

R
|V ′′(u)u− V ′′(w)w||z|+

∫

R
|V ′(u)− V ′(w)||z|) ≤

≤ 2‖u− w‖+ 2C(max
R

|h|) sup
z∈E, ‖z‖=1

∫

R
|u− w||z| ≤ (2 + 2C max

R
|h|)‖u− w‖

by the Cauchy-Schwarz inequality. Thus, ∇J is locally Lipschitz on E \ {0}, so V is locally Lipschitz on

E \ {0}.
Let η be the solution of the initial value problem dη/ds = −V (η), η(0, u) = u. By Lemma 2.8,

S ∩{I ≤ B} is bounded for any B > 0. V is bounded on bounded subsets of E by (2.33)(ii) and Lemma 2.1.

Since V is locally Lipschitz and I decreases along flow lines of η, it follows that η is continuous on R+ × S.
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Returning to the indirect argument, (um) is a bounded sequence, so by Lemma 2.1 there exists A > 0

with ‖I ′|S(y)‖ ≤ ‖I ′(y)‖ ≤ A for all y ∈ Br(um), for any m. Dropping the second argument of η for a

moment, if η(s) ∈ Br(um), then ‖dη/ds‖ = ‖V (η(s))‖ ≤ 2‖I ′|S(u)‖ ≤ 2A. Therefore if η(0) = um, η

requires time at least equal to r/(2A) to escape Br(um). So η(s, um) ∈ Br(um) and ‖I ′(η(s, um))‖ ≥ δ/2 for

all s ∈ [0, r/(2A)]. But this implies

I(η(r/2A, um)) = I(η(0)) +
∫ r/2A

0

d
ds

I(η) ds = I(um)−
∫ r/2A

0
I ′(η)V (η) ≤ (2.35)

≤ I(um)−
∫ r/2A

0
‖I ′|S(u)‖2 ≤ I(um)−

∫ r/2A

0
σ2‖I ′(u)‖2 ≤

≤ I(um)−
∫ r/2A

0
σ2(δ/2)2 = I(um)− (rσ2δ2)/(8A),

for some σ > 0 as given by Proposition 2.20. Since I(um) → c, I(η(r/2A, um)) < c for large m. This

contradicts the definition of c, since η(r/2A, um) ∈ S.

Note: this result, with ε = 0, implies that S ∩ {I = c} = K(c). Also, K(c) is nonempty: take (um) ∈ S
with I(um) → c, then apply Proposition 2.31 and Corollary 2.5.

3. Case I: Compact Component of Solutions

Here we prove Theorem 1.8in the case that the nonempty set K(c) has a compact component. (g3) is

not needed in this case. Let C be a compact, connected component of K(c). Let r0 = r0(0) > 0 be from

(2.9). Also assume that r0 is chosen small enough so that

Nr0(K(c)) ⊂ {1
2
c ≤ I ≤ 3

2
c}. (3.0)

This is possible by Lemmas 2.8 and 2.1. Since C is compact, Nr0(C) is weakly closed. By (3.0), Nr0(C)

does not contain 0, so Corollary 2.5 with ε = 0 implies that Nr0(C) ∩ K(c) is compact.

We will use topological arguments similar to some found in [7]. ∂Nr0(C)∩K(c) is a closed subset of the

compact set Nr0(C) ∩ K(c), hence compact. By a separation theorem from point set topology ([17]), there

exist disjoint compact sets A and A2 with A∪A2 = Nr0(C)∩K(c), C ⊂ A, and ∂Nr0(C)∩K(c) ⊂ A2. Since A

and A2 are compact and disjoint, they are separated by a positive distance. Let ρ > 0 with N3ρ(A)∩A2 = ∅.
Also let ρ be small enough so that

N3ρ(A) ⊂ Nr0(C). (3.1)

This is possible because A ⊂ N3ρ(A), A and ∂Nr0(C) are disjoint, and A is compact. Now

(N3ρ(A) \A) ∩ K(c) = ∅. (3.2)

This is true for the following reason: by choice of A, A2, and ρ, N3ρ(A) ∩ K(c) ⊂ Nr0(C) ∩ K(c) ⊂ A ∪ A2,

while N3ρ(A) is disjoint with A2. Therefore, N3ρ(A) ∩ K(c) ⊂ A, so (N3ρ(A) \A) is disjoint with K(c).

We claim there exists d > 0 with

u ∈ S ∩ (N3ρ(A) \Nρ(A)) ⇒ I(u) > c + d. (3.3)
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To prove, argue indirectly: otherwise, there exist (um) ⊂ S ∩ (N3ρ(A) \ Nρ(A)) with I(um) → c. By

Proposition 2.31, I ′(um) → 0. As before, (um) has a nonzero weak limit, so (um) is precompact, with a limit

point in the closed set N3ρ(A) \Nρ(A). This contradicts (3.2).

Let B = S ∩N2ρ(A). Choose ε > 0 small enough so that

u ∈ B ⇒ ‖u−Nε(u)‖ < ρ. (3.4)

and

u ∈ B ⇒ |Iε(Nε(u)u)− I(u)| < d/3. (3.5)

(3.4)-(3.5) are possible by Lemma 2.14 and Lemma 2.2. Define Bε = {Nε(u) | u ∈ B}. Then for all

w ∈ ∂SεBε, w = Nε(u) for some u ∈ ∂SB, so (3.5) gives

Iε(w) = Iε(N (u)) ≥ I(u)− |Iε(Nε(u))− I(u)| > (c + d)− 1
3
d = c +

2
3
d. (3.6)

Also, letting u0 ∈ A ⊂ K(c) and w0 = Nε(u0) ∈ Bε,

inf
Bε

Iε ≤ Iε(w0) = Iε(Nε(u0)) ≤ I(u0) + |Iε(Nε(u0))− I(u0)| < c +
1
3
d. (3.7)

By Ekeland’s Variational Principle ([18]) (or an original argument like the proof of Proposition 2.31), there

exists a sequence (wm) ⊂ Bε with Iε(wm) → infBε Iε and I ′ε|Sε(wm) → 0 as m → ∞. By Proposition 2.20,

I ′ε(wm) → 0. By the definition of B, and (3.4), (wm) ⊂ N3ρ(A) ⊂ Nr0(C). Apply Corollary 2.6 to

the sequence (wm). Since Nr0(C) is weakly closed and does not contain 0, case (i) and not case (ii) of

Corollary 2.5 holds, proving Theorem 1.8.

4. Case II: Isolated Critical Value

Here we prove Theorem 1.8 in the case that c is an isolated critical value of I and Case I does not hold.

That is, c is an isolated critical value of I and K(c) has a non-compact component. This occurs, for example,

if h is a constant and n = 1. Here (g3) is essential: if h is a constant, and g is monotone and non-constant,

then it is known (see [1]) that for any ε 6= 0 (1.1) cannot have a homoclinic solution.

Throughout this section, we assume that (1.1) has no homoclinic solution, then obtain a contradiction.

The idea of the proof is similar to that that of [19]. We will take a non-compact, connected subset C of

K(c) and project it onto Sε. By our assumption, Iε|Sε has no critical points on Sε. We use this assumption

to deform C via a gradient vector flow on Sε. After doing the deformation, we obtain a non-connected set.

This is impossible, since C is connected and the deformation is continuous.

Define the “location” function L : E \ {0} → R by

L(u) = t0 :
∫

R
tan−1(t− t0)(|u′|2 + |u|2) dt = 0. (4.0)

By the implicit function theorem, L is a continuous function on E \ {0}. Roughly, L(u) tells where on the

real line a function u is concentrated. Define Sε(0) ⊂ Sε by

Sε(0) = {w ∈ Sε | L(w) = 0}, (4.1)
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and let

cε(0) = inf
Sε(0)

Iε. (4.2)

Let ĉ ∈ (c, 3c/2) and be close enough to c so that for some α > 0,

(c, ĉ + α) contains no critical values of I. (4.3)

We will see in a moment that for small enough |ε|,

cε(0) <
3
2
c. (4.4)

It is standard to check that cε ≤ c. If cε < c then Theorem 1.8 holds: by familiar arguments from, for

example, the Mountain Pass Theorem of Ambrosetti and Rabinowitz ([20]), there exists a sequence (ym) ∈ E

with Iε(ym) → cε and I ′ε(ym) → 0. By Corollary 2.5, (ym) is precompact. Therefore we assume cε = c.

Clearly cε(0) ≥ cε = c. Actually, we may assume

cε(0) > c, (4.5)

for if cε(0) = c, then there exist (wm) ⊂ Sε(0) with Iε(wm) → cε = c. By Proposition 2.31, I ′ε(wm) → 0.

By Corollary 2.5, either (wm) is precompact, or there exist v̄ ∈ K(c) and (pm) ⊂ Z with |pm| → ∞
and ‖wm − τpm v̄‖ → 0 as m → ∞. The latter case is impossible, as then τ−pmwm → v̄, L(τ−pmwm) =

L(wm)− pm → L(v̄), so |L(wm)| → ∞.

Let C be a non-compact, connected subset of K(c). Then L(C) ≡ {L(v) | v ∈ C} is connected and

unbounded in R: L(C) is connected because C is connected and L is continuous. To show that L(C) is

unbounded, let (vm) ⊂ C be a subset of C that is not precompact. By the argument above, |L(vm)| → ∞.

Recall Nε from Lemma 2.14, and define I0
ε : E \ {0} → R by

I0
ε (u) = Iε(Nε(u)) = max

s>0
Iε(su). (4.6)

Let |ε| be small enough so that for all v ∈ K(c),

1
2
c < I0

ε (v) < ĉ. (4.7)

This is possible by Lemma 2.14, Lemma 2.1, and the fact that K(c) is bounded (Lemma 2.8). Since L(C) is

connected and unbounded, there exists k ∈ L(C)∩Z and v ∈ C with L(v) = k. Then, Nε(τ−kv) ∈ Sε(0), so

by (4.7), cε(0) ≤ Iε(Nε(τ−kv)) = I0
ε (τ−kv) < 3

2c, proving (4.4).

Before proceeding further, we need the following lemma, which states roughly that Iε ≈ I for functions

which are supported far away from 0 ∈ R:

Lemma 4.8 There exists ε0 = ε0(V, h, g) with the property that if |ε| ≤ ε0, (vm) ⊂ K(c) and |L(vm)| → ∞,

then

I0
ε (vm) → c

as m →∞.
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Proof: Let (vm) be as above. It suffices to show that (vm) has a subsequence along which I0
ε (vm) → c.

Let r0 = r0(0) be as in (2.9). By Lemma 2.11(ii), I ′(2v)v < − 1
4 (p− 1)r2

0 for all u ∈ K(c). By Lemma 2.11,

for small enough |ε|, I ′ε(2u)u < − 1
8 (p− 1)r2

0 for all u ∈ K(c). Therefore, by the behavior of s 7→ I(su),

I0
ε (vm) = max

s∈[0,2]
Iε(svm), (4.9)

for all m, and

|I0
ε (vm)− c| = |I0

ε (vm)− I(vm)| = | max
s∈[0,2]

Iε(svm)− max
s∈[0,2]

I(svm)| ≤ (4.10)

≤ max
s∈[0,2]

|Iε(svm)− I(svm)| = |ε| max
s∈[0,2]

|
∫

R
gV (svm)| ≤

≤ |ε| max
s∈[0,2]

∫

R
|g|V (svm) ≤ |ε|

∫

R
|g|V (2vm).

Let δ > 0. Let R > 0 with |g| < δ on {|t| ≥ R}. (vm) is bounded in E (Lemma 2.8), hence in L∞(R), so by

(V1)− (V2), there exists B with V (2vm(t)) < B|2vm(t)|2 for all m and all t ∈ R. Thus
∫

R
|g|V (2vm) dt =

∫

{|t|>R}
|g|V (2vm) dt +

∫

{|t|<R}
|g|V (2vm) dt ≤ (4.11)

≤ δ
∫

{|t|>R}
4B|vm|2 dt + 4B

∫

{|t|<R}
|g||vm|2 dt ≤

≤ 4B‖vm‖2δ + 4B(max
R

|g|)
∫

{|t|<R}
|vm|2 dt.

Apply Corollary 2.5 with ε = 0 to (vm). Since |L(vm)| → ∞, Corollary 2.5 case (ii) applies and vm → 0 in

W 1,2
loc (R). Thus (4.10)-(4.10) yield

lim sup
m→∞

|I0
ε (vm)− c| ≤ δ(4B|ε| lim sup

m→∞
‖vm‖2). (4.12)

Since δ is arbitrary, I0
ε (vm) → c.

By Lemma 4.8, we may choose R > 0 so that if v ∈ K(c) with |L(v)| ≥ R, then

I0
ε (v) < (c + cε(0))/2 < cε(0). (4.13)

L(C) is connected and unbounded. By translating C along the real line if necessary, we may assume that

there exist z0, z1 ∈ C with L(z0) = −R and L(z1) = R. “Normalize” C to obtain

Y1 = Nε(C) ≡ {Nε(u) | u ∈ C}, w0 = Nε(z0), w1 = Nε(z1). (4.14)

Then w0, w1 ∈ Y1, L(w0) = −R, L(w1) = R, Iε(w0) < (c+cε(0))/2, Iε(w1) < (c+cε(0))/2, Y1 is a connected

subset of Sε, and Iε(w) < ĉ for all w ∈ Y1 by (4.7).

Let us deform Y1 to obtain a contradiction. Like in the proof of Proposition 2.31, let Vε : Sε → E be a

locally Lipschitz vector field tangent to Sε and satisfying

I ′ε(u)Vε(u) ≥ ‖I ′ε|Sε(u)‖2, (4.15)(i)

‖Vε(u)‖ ≤ 2‖I ′ε|Sε(u)‖ (4.15)(ii)
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for all u ∈ Sε. Let ϕ : E → [0, 1] be a locally Lipschitz cutoff function with ϕ ≡ 0 on {Iε ≤ (c + cε(0))/2}
and ϕ ≡ 1 on {Iε ≥ c/3 + 2cε(0)/3}. As in the proof of Proposition 2.31, the initial value problem

dη/dt = −ϕ(η)Vε(η), η(0, w) = w has a continuous solution η : R+ × Sε → Sε.

We have been assuming that there is no critical point w of Iε with c ≤ Iε(w) ≤ 2c. Therefore, by

Corollary 2.6, Proposition 2.20, and the definition of ĉ, there exists δ > 0 such that ‖I ′ε|Sε‖ > δ for all

w ∈ Sε ∩ {(c + cε(0))/2 ≤ Iε ≤ ĉ}. Define

Y2 = η(2c/δ2, Y1) ≡ {η(2c/δ2, w) | w ∈ Y1}. (4.16)

Y2 is connected, since Y1 is connected and η is continuous. Thus L(Y2) is connected. w0, w1 ∈ Y2, since

w0, w1 ∈ Y , Iε(w0) < (c + cε(0))/2, Iε(w1) < (c + cε(0))/2, and ϕ ≡ 0 on {Iε ≤ (c + cε(0))/2}. Since

L(w0) < 0 < L(w1) and L(Y2) is connected, there exists w̃ ∈ Y2 with L(w̃) = 0. Since w̃ ∈ Sε(0),

Iε(w̃) ≥ cε(0) by definition of cε(0).

This is impossible because for all w ∈ Y2, Iε(w) ≤ c/3 + 2cε(0)/3 < cε(0). The proof of this is indirect.

Suppose w ∈ Y2 with Iε(w) ≥ c/3 + 2cε(0)/3. w has the form w = η(2c/δ2, u) for some u ∈ Y1. For all

s ∈ [0, 2c/δ2], Iε(η(s, u)) ≥ c/3+2cε(0)/3. By (4.7), Iε(u) < ĉ. The choice of δ and the definition of ϕ imply

that ‖I ′ε(η(s, u))‖ ≥ δ and ϕ(η(s, u)) = 1 for all s ∈ [0, 2c/δ2]. Therefore,

Iε(η(2c/δ2, u)) = Iε(u) +
∫ 2c/δ2

0

d
ds

Iε(η(s, u)) ds = Iε(u)−
∫ 2c/δ2

0
I ′ε(η(s, u))V (η(s, u)) ds ≤ (4.17)

≤ Iε(u)−
∫ 2c/δ2

0
δ2 ≤ cε(0)− (2c/δ2)δ2 = cε(0)− 2c < ĉ− 2c < −c/2 < 0.

This is impossible, since Iε > 0 on Sε. Theorem 1.8, [Case II and not Case I] is proven.

5. A PDE Analogue

Here we pose the obvious PDE analogue of Theorem 1.8. Most of the steps of the proof can be followed

as before. However, the proof fails for “Case II.” Differences between the topology of R and of Rn (n > 1)

are to blame. Despite this failure, we can verify the conlusion of the Theorem 1.8 analogue for a large class

of autonomous PDE.

Let n ≥ 2 and consider the equation

−∆u + u = h(x)f(u), (5.0)

where f and h satisfy

(f1) f ∈ C1(R,R)

(f2) f(0) = 0 = f ′(0)

(f3) there exists p > 1 such that f ′(q)q2 ≥ pf(q)q > 0 for all q ∈ R \ {0}
(f4) there exist a1, a2, s > 1 with |f ′(q)| ≤ a1 + a2|q|s−1 for all q ∈ R, with s < (n + 2)/(n− 2) if n ≥ 3

(f5) there exist C, r > 0 with

|f ′(q1)q1 − f ′(q2)q2| ≤ C(1 + |q1|r + |q2|r)|q1 − q2|
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for all q1, q2 ∈ R, with r = 4/(n− 2) if n ≥ 3

(h1) h ∈ C1(Rn,R)

(h2) h(x) > 0 for all x ∈ Rn

(h3) h is periodic in x1, x2, . . . , xn.

These are essentially the same conditions as those for Theorem 1.8, except for the additional subcritical-

growth condition (f4), which is not needed in the n = 1 case. (f5) is an analogue of (V4) from Theorem 1.8.

(f1) − (f5) hold if, for example, f(q) = |q|s−1q with s as in (f4). Equation (5.0) or more general versions

have been the subject of much study, including [21] and [9].

Define the energy functional I(u) = 1
2‖u‖

2 −
∫

RnhF (u) on W 1,2(Rn), where F is the primitive or

antiderivative of f . Critical points of I correspond to “homoclinic-type” solutions of (5.0), that is, solutions

u with |u(x)|+ |∇u(x)| → 0 as |x| → ∞. We may define S, c, and K(c) exactly as before in the Introduction.

Since analogues for all the results for Section 2 hold here, K(c) is nonempty.

If K(c) has a compact component (Case I), then suppose g satisfies

(g1) g ∈ C1(Rn,R) and

(g2) supx∈Rn |g(x)| < ∞.

The results of Section 2 can be proven easily (with the exception of those which involve (f5); we will verify

these in a moment). Then the arguments of Section 3 can be applied to show that for small enough |ε|, the

equation

−∆u + u = (h(x) + εg(x))f(u), (5.1)

has a nonzero homoclinic-type solution. As before, (g3) is not needed.

In the case that c is an isolated critical value of I and Case I does not hold (Case II and not Case I),

things are not so clear. Before explaining why the the n = 1 proof does not generalize, let us look at a class

of h’s for which the perturbed equation (5.1) does have a homoclinic-type solution. Namely,

Theorem 5.2 If h ≡ constant > 0, f satisfies (f1)− (f5), c is an isolated critical value of I and g satisfies

(g1)− (g2) and

(g3) g(x) → 0 as |x| → ∞,

then there exists ε0 > 0 with the property that if |ε| ≤ ε0, then (5.1) has a homoclinic solution.

Proof: We will be sketchy at times because most of the work has been done in Sections 2 and 4. All

of the results in Section 2 have analogues here. Most are easy to prove, but one should be noted. We need

to verify the fact that J ′ is locally Lipschitz on E ≡ W 1,2(Rn), where J(u) = I ′(u)u. This is needed for

Proposition 2.31, and also for arguments like those in Section 4 which employ a gradient vector field for Iε

constrained to Sε. We will look at the n ≥ 3 case; the n = 2 case is similar.

Let u,w ∈ E. We must bound ‖J ′(u) − J ′(w)‖/‖u − w‖ in terms of ‖u‖ and ‖w‖: ‖J ′(u) − J ′(w)‖ =

sup‖z‖=1 |(J ′(u)− J ′(w))z|, so let ‖z‖ = 1. Then

(J ′(u)− J ′(w))z = 2(u− w, z)−
∫

Rn
(f ′(u)u− f ′(w)w)z −

∫

Rn
(f(u)− f(w)z, (5.3)

|(J ′(u)− J ′(w))z| ≤ 2‖u− w‖+
∫

Rn
|f ′(u)u− f ′(w)w||z| −

∫

Rn
|f(u)− f(w)||z|.
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We must estimate the last two integrals. By (f3),

∫

Rn
|f ′(u)u− f ′(w)w||z| ≤ C

(∫

Rn
|u− w||z|+

∫

Rn
|u|r|u− w||z|+

∫

Rn
|w|r|u− w||z|

)

. (5.4)

The first integral above is easy to estimate via the Cauchy-Schwarz inequality. The second and third are

similar, so let us look at the third. Let n̄ = 2n/(n− 2). Then r = 4/(n− 2) = 2n̄/n. 1/(n
2 )+ 1/n̄+1/n̄ = 1,

so by Hölder’s inequality,
∫

Rn
|w|r|u− w||z| =

∫

Rn
|w|2n̄/n|u− w||z| ≤ ‖|u|2n̄/n‖Ln/2(Rn)‖u− w‖Ln̄(Rn)‖z‖Ln̄(Rn) = (5.5)

= ‖u‖2n̄/n
Ln̄(Rn)‖u− w‖Ln̄(Rn)‖z‖Ln̄(Rn) ≤ An‖u‖2n̄/n‖u− w‖

for some An depending on n.

The last integral in (5.3) is similar. By the mean value theorem, for every q1, q2 ∈ R there is a φ between

q1 and q2 with

|f(q1)− f(q2)| ≤ |f ′(φ)||q1 − q2| ≤ (a1 + a2|φ|s−1)|q1 − q2| ≤ B1(1 + |φ|n̄−2)|q1 − q2| ≤ (5.6)

≤ B2(1 + |q1|n̄−2 + |q2|n̄−2)|q1 − q2|,

where B2 depends on a1, a2, and n. Therefore
∫

Rn
|f(u)− f(w)||z| ≤ B2

∫

Rn
(1 + |u|n̄−2 + |w|n̄−2)|u− w||z| = (5.7)

= B2

(∫

Rn
|u− w||z|+

∫

Rn
|u|n̄−2|u− w||z|+

∫

Rn
|w|n̄−2|u− w||z|

)

.

Since n̄− 2 = 2n̄/n, the argument of (5.5) provides the estimate.

The main proof idea of Theorem 5.2 is similar to that in [19]. Let v0 ∈ K(c). For x ∈ Rn, define the

translation operator τx : W 1,2(Rn) → W 1,2(Rn) like in Section 2. Let C = {τxv0 | x ∈ Rn}. Since (5.0) is

autonomous, C ⊂ K(c). Define ĉ ∈ (c, 3c/2) as in (4.3). Define Iε and I0
ε as in (1.3) and (4.6) and let |ε| be

small enough so that

u ∈ C ⇒ 1
2
c < I0

ε (u) < ĉ. (5.8)

Define the “location” function L, similar to L from (4.0), as follows: for i = 1, 2, . . . , n, define Li : W 1,2(Rn)\
{0} → R by

Li(u) = t :
∫

R
tan−1(xi − t)(|∇u|2 + |u|2) dx = 0, (5.9)

and L(u) = (L1(u), . . . ,Ln(u)). Define Sε as in (4.1), and let

Sε(0) = {w ∈ S | L(w) = 0} (5.10)

and

cε(0) = inf
Sε(0)

Iε. (5.11)

As before, if cε(0) ≤ c we can use a multi-dimensional version of Corollary 2.6 (see [21]) to show that Iε has

a nonzero critical point. So assume cε(0) > c. As before, for small enough ε, cε(0) < ĉ.
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Assume without loss of generality that L(v0) = 0. Let R be large enough so that

|x| ≥ R ⇒ I0
ε (τxv0) < (c + cε(0))/2. (5.12)

Now suppose that Iε has no critical values between c and 2c. Like at the end of Section 4, there exists a

continuous deformation η : R+ × Sε → Sε and a number T > 0 with the properties that η(0, w) = w for all

w ∈ Sε, η(t, w) = w for all t ≥ 0 if w ∈ Sε with Iε(w) ≤ (c + cε(0))/2, and Iε(η(T, w)) ≤ c/3 + 2cε(0)/3 for

all w ∈ Sε with Iε(w) ≤ ĉ.

Let Nε be as in (2.13). Define H : [0, T ]×BR(0) → Rn by H(t, x) = L(η(t,Nε(τxv0))). Now H(0, x) =

L(τxv0) = x for all x ∈ BR(0). For all x ∈ ∂BR(0) and all t ∈ [0, T ], I0
ε (τxv0) < (c + cε(0))/2 by (5.12), so

H(t, x) ≡ L(η(t,Nε(τxv0))) = L(Nε(τxv0)) = L(τxv0) = x 6= 0 (5.13)

for t ∈ [0, T ]. Therefore the Brouwer degree d(H(t, ·), BR(0), 0) is well-defined for all t ∈ [0, T ], and is the

same for all such t. Since H(0, x) ≡ x, d(H(T, ·), BR(0), 0) = 1 6= 0. Thus there exists x0 ∈ BR(0) with

H(T, x0) ≡ L(η(T, τx0v0)) = 0, so by the definition of cε(0),

Iε(η(T, τx0v0)) ≥ cε(0). (5.14)

This is impossible because Iε(τx0v0) < ĉ and Iε(η(T,w)) ≤ c/3 + 2cε(0)/3 < cε(0) for all w ∈ Sε with

Iε(w) ≤ ĉ. Theorem 5.2 is proven.

An Example of Theorem 5.2

The hypotheses of Theorem 5.2 can be verified for the following example: h ≡ 1, and in addition to

(f1)−(f5), (5.0) has a unique (modulo translation) positive homoclinic-type solution. There are many known

examples of this uniqueness ([22]). In this case, it is straightforward to prove that c is an isolated critical

value of I, using elliptic estimates and the maximum principle.

Despite Theorem 5.2, in general in the case that c is an isolated critical value of I and K(c) has a non-

compact component, we cannot hope to make the arguments of Section 4 work. This is why: in Section 4,

we found a non-compact, connected set of solutions C ⊂ K(c) to the unperturbed problem. We showed that

L(C) must be a connected, unbounded set. By translating C, we were able to find a connected subset C of

K(c) such that L(C) contained an arbitrarily large neighborhood of 0 ∈ R (the interval [−R,R] in (4.13)).

This was the key to setting up the connectedness/deformation argument.

Working in more than one dimension, if C is a connected, noncompact subset of K(c), then L(C) ⊂ Rn

is (still) a connected, unbounded set. But an arbitrary unbounded, connected subset of Rn (n ≥ 2) may

have empty interior, so the argument which succeeded in Theorem 5.2 is impossible.

Open Questions

There are many open questions associated with (1.1) and similar problems. A dearth of counterexamples

(functions h and V in (1.0) for which it is known that no homoclinic-type solution exists) makes such questions

easy to pose. For example, we saw above that Theorem 1.8 cannot easily be extended to more than one

dimension, and indeed whether the theorem is true in this case is unknown. It is unknown whether Case I

or Case II are necessary for the result of Theorem 1.0. It is not even known whether |ε| has to be small!
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